
1.  Introduction
Anthropogenic climate change is driving shifts in global precipitation patterns (Douville et al., 2021). Recent 
studies have characterized these shifts across a diversity of metrics and scales, including annual totals, frequen-
cies of occurrence, and zonal distributions. At the daily scale, recent efforts have demonstrated robust changes in 
extreme precipitation intensities (i.e., the 95th percentile and above; Seneviratne et al., 2021). However, character-
ization of changes in the full distribution of precipitation intensities–events which are, by definition, much more 
common–are often overlooked. While extreme precipitation events can produce outsized damages given their 
exceptional nature, changes in non-extreme precipitation have critical impacts on many Earth systems, including 
agriculture (Shortridge, 2019), infrastructure (Cook et al., 2019), and natural hazards (Cannon et al., 2008; Dinis 
et al., 2021). For example, including increasing daily precipitation variability in projections of future crop yields 
resulted in a 2%–6% reduction in relative yields compared to projections excluding this factor (Shortridge, 2019). 
Here, to more comprehensively characterize daily precipitation shifts, we explore changes in the full distribution 
of wet day precipitation intensities over seventeen climatically distinct regions across the United States.

1.1.  Why Is Precipitation Changing?

Globally, mean annual precipitation is expected to increase ∼2%/K with warming (Held & Soden, 2006; Trenberth 
et al., 2003; Wentz et al., 2007; Wood et al., 2021), though considerable observed and projected spatiotemporal 
variability underlie this estimate (e.g., Polade et al. (2014) globally; Caloiero et al. (2018) in Europe). Anthropo-
genic climate change is expected to alter precipitation patterns via both thermodynamic and dynamic processes. 
Thermodynamic changes are driven by an increase in atmospheric moisture content with warming, which occurs 
at a rate of ∼6%–7%/K as described by the Clausius-Clapeyron relationship. An increase in atmospheric mois-
ture content leads to an increase in globally averaged rainfall, though magnitude estimates of the corresponding 
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increase depend on spatial and temporal scales (Bador et al., 2018; Cannon & Innocenti, 2019; Giorgi et al., 2019; 
Sun et al., 2021; Westra et al., 2014; Wood & Ludwig, 2020; Wood et al., 2021). Globally averaged precipita-
tion increases are also constrained by Earth's energy budget, which leads to a discrepancy between increased 
moisture availability and precipitation change (Pendergrass & Hartmann, 2014a). Dynamically driven precip-
itation changes are mostly associated with shifts in atmospheric circulation (e.g., Endo & Kitoh, 2014; Swain 
et  al.,  2016). Examples of these mechanisms include climatological shifts in cyclone and anticyclone tracks, 
baroclinic zones, and jets–which are driven by the reduction in the equator-pole temperature gradient–a poleward 
expansion of the descending branch of Hadley cells, and increases in land-sea temperature gradients (Polade 
et al., 2014). Altered precipitation totals can also be caused by more subtle changes, such as reductions in storm 
speeds (Kahraman et al., 2021). The relative importance of these factors varies widely depending on location.

Locally, the rate of increase of precipitation for smaller-scale and heavy precipitation events parallels and can 
even exceed Clausius-Clapeyron scaling, particularly during convective precipitation (Guerreiro et  al.,  2018; 
Lenderink & van Meijgaard,  2008; Risser & Wehner,  2017) or where local conditions shift from favoring 
stratiform to convective precipitation (Berg & Haerter, 2013; Berg et al., 2013; Ivancic & Shaw, 2016). Prein 
et al. (2017) project increases in extreme precipitation frequency and intensity with rising temperatures in moist, 
energy-limited environments, along with abrupt decreases in dry, moisture-limited environments. However, 
the precise scaling of extreme precipitation to rising temperatures and moisture availability is dependent on 
a multitude of factors, including characteristics of local convection, topography, and synoptic-scale dynamics 
(Moustakis et al., 2020).

1.2.  How Is Daily Precipitation Variability Changing?

Increases in the frequency and intensity of extreme daily precipitation have been widely observed (Alexander 
et  al.,  2006; Asadieh & Krakauer,  2015; Donat et  al.,  2016; Myhre et  al.,  2019; Sun et  al.,  2021; Westra 
et al., 2014; Wood et al., 2021) and generally agree with increases projected by climate model simulations (Fischer 
and Knutti, 2014, 2016; Groisman et al., 2005; Min et al., 2011; Moustakis et al., 2021; Myrhe et al., 2019; 
O’Gorman, 2015; Toreti et al., 2013). For example, Lehmann et al. (2015) found that record-breaking rainfall 
events occurred 12% more often than expected globally from 1981 to 2010 with an estimated 26% chance that 
a record-setting rainfall event is due to long-term climate change. Min et  al.  (2011) examined observed and 
modeled changes and found that climate change has contributed to the observed intensification of heavy precip-
itation events over two-thirds of the Northern Hemisphere. Sub-daily extreme precipitation is both observed and 
projected to increase at an even faster rate than daily extremes at regional and global scales (e.g., U.S., Prein 
et al., 2017; the Netherlands, Lenderink & van Meijgaard, 2008; global, Westra et al., 2014).

Despite widespread research into precipitation extremes, changes over the full distribution of precipitation inten-
sities are less well-characterized. For instance, Chou et al. (2012) find an increase in heavy precipitation events 
relative to light in the global tropics in model simulations. Giorgi et al. (2019) find similar results over extratrop-
ical land, including an overall reduction in lower intensity event frequency and increase in higher intensity event 
frequency. Hennessy et al. (1997) modeled changes in daily precipitation and found distribution shifts from low 
to high intensity at high latitudes along with increased heavier precipitation events coincident with a reduction 
of moderate events in the mid-latitudes. Despite the identification of changes in distributions of precipitation 
intensity at broad global or zonal scales, studies at regional and local scales are sparse.

In the United States, increases in mean annual precipitation and extreme precipitation have been noted, though 
changes are non-uniform and have seasonal dependencies (Easterling et al., 2017; Goble et al., 2020). Here, we 
focus on observed changes in daily precipitation. Increases in heavy to extreme precipitation are well established 
in the central and eastern U.S. (Contractor et al., 2021; Groisman et al., 2001, 2005, 2012; Guilbert et al., 2015; 
Karl & Knight, 1998; Kunkel et al., 2013; Pryor et al., 2008; Sun et al., 2021; Villarini et al., 2013). In addition, 
increases in light-to-moderate precipitation frequency are driving a general increase in precipitation frequency 
in the U.S. (Goodwell & Kumar, 2019; Karl & Knight, 1998; Pal et al., 2013; Roque-Malo & Kumar, 2017). 
However, the evolution of the proportion of lower versus higher intensity wet days is unresolved with contra-
dictory findings reported. For example, Groisman et al. (2012) found more frequent higher intensity events over 
the central U.S. despite no change in moderate intensity events. In contrast, Karl and Knight (1998) identified 
an increasing frequency of events across most percentiles and U.S. regions, including an increase in moderate 
intensity events. While findings focused on the eastern and central U.S. are generally consistent, studies focused 
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on the western U.S. disagree. For example, Contractor et al. (2021) and Higgins and Kousky (2013) find gener-
ally increasing frequency and intensity of wet day events over the majority of the U.S. but decreasing moderate 
to heavy intensity events along the Pacific coast. Their findings are inconsistent with findings of increasing or 
insignificant extreme precipitation change on the U.S. west coast by Kunkel et al. (2013). Many previous analy-
ses used gridded precipitation products (e.g., Contractor et al., 2021) that possess known inconsistencies across 
products (Alexander et  al., 2020) and center on heavy-to-extreme precipitation or arbitrary light or moderate 
thresholds (e.g., 50th percentile or 10 mm; Higgins & Kousky, 2013; Kunkel et al., 2013). To overcome these 
methodological limitations and reconcile disparate findings, here we examine changes over the complete distri-
bution of precipitation intensities by spatially aggregating a large number of in situ station observations across a 
high number of empirically determined, distinct U.S. climate regions.

2.  Methods
To partition the U.S. into climatologically distinct regions, we adopt the National Ecological Observatory Network 
(NEON) domains. These 20 domains were designed to be climatically homogeneous within-domains but distinct 
across-domains and were created using a multivariate geographic clustering analysis incorporating nine different 
temperature and precipitation variables (National Ecological Observatory Network, n.d.; Schimel, 2011; Keller 
et al., 2008). We center our analysis on the 17 domains that comprise the contiguous United States (Figure 1). 
Rather than analyze station records individually, we employ spatial aggregation to provide a larger sample size 
and better view of change over time given the inherent limitations of individual station statistics and internal 
climate variability. Spatial aggregation has frequently been employed in precipitation analyses (e.g., Fischer 
et al., 2013; Groisman et al., 2005; Kunkel et al., 2013). In addition to the 17 domains within the contiguous 
U.S., we include findings for the remaining three domains, as well as replicate our analysis for the U.S. National 
Climate Assessment regions (NCA; Easterling et al., 2017), in Supporting Information S1.

Our analysis uses daily in situ observations of precipitation from the Global Historical Climatology Network 
Daily (GHCN-D). The GHCN-D database is compiled by NOAA's National Centers for Environmental Infor-
mation and consists of records from over 80,000 stations and 180 countries and territories, including the most 
complete collection of daily U.S. data available (Menne et al., 2012). Observations in GHCN-D have a sensitivity 
of 0.1 mm and undergo a series of 19 quality control tests to flag duplicate data, climatological outliers, and other 
inconsistencies, as detailed in Durre et al. (2010).

To examine changes in the distribution of wet day precipitation intensities, we aggregate all wet day precipitation 
observations for all qualifying stations within each domain, where a wet day is defined as a station-day observing 

Figure 1.  Station Locations and Domain Station Counts. (a) Map of qualifying Global Historical Climatology Network Daily stations (blue dots) overlaid on the 
United States with National Ecological Observatory Network (NEON) domain boundaries in thick black and state borders in thin gray. (b) Histogram of the number of 
qualifying stations within each NEON domain.
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1 mm or more of precipitation. This is done for two 30-year periods: 1951–1980 and 1991–2020. We choose 
the early time period (1951–1980) due to the proliferation of GHCN-D stations that peaked in this interval (see 
Figure 3b; Menne et al., 2012); we selected the late time period (1991–2020) as the most recent 30-year interval 
with available data. The distributions are built around 30-year periods of reference to overcome known impacts 
of interannual modes of climate variability (e.g., Groisman et al., 2012) and align with World Meteorological 
Organization guidelines (World Meteorological Organization, 2017). To ensure quality of record and consistency 
in stations across periods, we include data from a station if 90% of the station-years in both periods are complete, 
where a complete year is defined as containing 90% or more of all available daily records after removal of any 
flagged entries. Applying this filter reduces available records from an initial 63,571 to 1,742 that are suitable 
for our analysis. Figure 1 depicts station locations and stations per domain. Finally, we manually check extreme 
outliers against historical records (e.g., state records, U.S. National Weather Service records), to corroborate 
their validity. This final check identified 32 unverifiable records that we remove from our analysis (Table S1 in 
Supporting Information S1).

Qualifying wet day observations are aggregated into early or late period daily precipitation intensity proba-
bility distributions via block bootstrapping. Raw observations from qualifying stations are parsed into 2-year 
station-segments, resampled with replacement, and combined. The resultant 2-year aggregations are then stacked 
to produce a single 30-year precipitation intensity distribution sample for each domain; this process is replicated 
1,000 times for each period in each domain. We then calculate differences between early and late period distri-
butions across four statistical moments (mean, standard deviation, skew, kurtosis). This process is replicated 
for each bootstrap resample to determine statistical confidence intervals for changes in statistical moments. In 
addition, we characterize changes in the full precipitation intensity distributions by quantifying changes in the 
number of wet day events within each five percentile increment bin (e.g., 50th–55th percentile), where percentile 
bin ranges are determined by values in the early period distribution sample.

Finally, the initial early and late precipitation intensity distributions are directly compared through two-sample 
Kolmogorov-Smirnov and Anderson-Darling tests, both of which are suitable for nonparametric analysis and 
are insensitive to the number of events in the distributions (Chakravarti et  al.,  1967; Stephens, 1974). These 
tests were performed on all available station data within a domain (i.e., not bootstrapped). We employed the 
Anderson-Darling test in addition to the more common Kolmogorov-Smirnov due to its higher sensitivity to 
extreme values, though results proved largely consistent. While both tests can determine if distributions are 
distinct, they do not provide descriptive information as to how the distributions differ. We thus characterize early 
and late period distribution differences by computing differences in wet day intensity distributions and their statis-
tical moments. However, it should be noted that statistical moments do not comprehensively characterize a distri-
bution. As such, statistically significant changes identified by the Kolmogorov-Smirnov and Anderson-Darling 
two-sample tests, may not be discernible via the moment difference analysis.

3.  Results
Early and late period distributions of wet day precipitation intensity are statistically significantly differ-
ent (p < 0.05) for all NEON domains in the contiguous U.S. (Table S2 in Supporting Information S1), with 
broadly consistent changes observed across central and eastern domains. Specifically, mean wet day precipitation 
increases in all domains east of the Rocky Mountains (Figures 2a and 2b) except for one (Atlantic Neotropical), 
with an intensification in mean wet day precipitation between 4.5% and 5.7% for the majority of these eastern 
domains (Figure 2b). Similarly, the standard deviation of wet day precipitation intensity increased between 4.4% 
and 8.7% for each eastern domain (Figure 2c) outside of the Atlantic Neotropical. Changes in mean and standard 
deviation for western domains are mixed in sign and not statistically significant. Table S2 in Supporting Informa-
tion S1 shows the differences in mean, standard deviation, skew, and kurtosis across all NEON domains (results 
for NCA regions are reported in Figure S2 and Table S3 in Supporting Information S1).

In addition to changes in mean and standard deviation, we also quantify shifts in the underlying distributions 
across all precipitation intensities, allowing for a more nuanced characterization of observed distribution changes. 
Figure 3 illustrates smoothed observed shifts as determined by block bootstrapping. There is a broadly consistent 
shift from lower-to higher-intensity wet days across the central and eastern U.S. (blue filled regions, Figure 3). 
These changes are determined for five percentile increments and a demonstration of the calculations for two 
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bootstrap iterations is available in Supporting Information (Figure S3 in Supporting Information S1). We char-
acterize absolute differences in wet day intensities in Figures S3c–S3d in Supporting Information S1, along with 
relative differences in Figures S3e–S3f in Supporting Information S1. For example, in Figure S3c in Supporting 
Information S1, we demonstrate that in this iteration, the Great Lakes domain has experienced a robust shift from 

Figure 2.  Changes in Wet Day Precipitation Intensity Between Early and Late Periods. (a) Map of changes in mean wet day precipitation intensity for National 
Ecological Observatory Network (NEON) domains. Red-blue fill indicates change in precipitation intensity (mm/day) within domains (dark gray borders) on top of 
state boundaries (light gray borders). Hatching denotes domains without statistically significant changes. (b) Percentage changes in mean wet day precipitation for 
NEON domains. Blue bars show percentage change of mean and horizontal black line shows 95% confidence interval. (c) Same as (b) but for standard deviation of wet 
day precipitation and with red bars.
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lower to higher precipitation intensities across the full distribution of intensities, which becomes clearer when 
relativized against the initial early period frequencies in the early period (Figure S3e in Supporting Informa-
tion S1). To illustrate, the likelihood of a 95th–100th percentile event has increased by roughly 15% in the Great 
Lakes in the later period of observation (Figure S3e–S3f in Supporting Information S1).

The shift from lower-to higher-intensity events is largely consistent in the central and eastern U.S., with 
lower-intensity events decreasing in relative frequency for all but one domain (Atlantic Neotropical; blue filled 
regions, Figure 3) and a broadly consistent increase of ∼15% in the relative frequency of highest intensity events. 
However, while higher-intensity events generally increase for all central and eastern domains and intensities, this 
change is not uniform. For example, we observe no increase in the Atlantic Neotropical domain and a decrease in 
moderate intensity events in the Mid Atlantic domain. Similar to the mixed responses in mean wet day precipita-
tion changes, changes across distribution frequencies vary between domains in the western U.S. (see gray filled 
regions, Figure 3), though they are generally not statistically significant. For example, shifts within the Southern 
Rockies and Colorado Plateau, Desert Southwest, and Great Basin domains show similar, but muted, low-to 
high-intensity shifts like the eastern U.S. This change is juxtaposed against nearby regions such as the Pacific 
Northwest, where a decrease in the highest-intensity events is observed. We also find similar spatial patterns in 
intensity shift for extreme events (99th–100th percentile), though the increase in relative frequency of events in 
the eastern U.S. are higher (∼20%). Additionally, we include findings for NCA regions and 99th-plus percentile 
events in Figures S5–S10 in Supporting Information S1.

Figure 3.  Smoothed Relativized Frequency Change for Each Domain. (map) The United States with National Ecological Observatory Network domain boundaries 
(thick dark gray) and state borders (thin light gray). Blue fill denotes the cluster of central and eastern domains with a predominantly consistent significant change in 
frequency across intensities. Conversely, gray fill denotes the cluster of western domains with inconsistent or non-significant changes in frequency across intensities. 
(domain subplots) Smoothed change in relative frequency of wet day intensity for each domain. Relative frequency change is determined at five percentile increments 
before smoothing is performed across three increments; a fifth-order polynomial is fit to the subsequent smoothed data. This is shown for the median (thick black) and 
90% confidence bounds (thin black line and light blue shading) as determined by block bootstrapping. See Figure S3 in Supporting Information S1 for demonstration of 
underlying calculations and Figure S4 in Supporting Information S1 for raw (non-smoothed) results.
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4.  Discussion
Here, we examine the full extent of wet day precipitation intensity distributions and reveal statistically robust 
changes throughout the United States. Broadly, our analysis reveals an increase in mean wet day precipitation in 
the central and eastern U.S. from 1951–1980 to 1991–2020 driven by a shift from lower-to higher-intensity wet 
day events. Changes in the mean and standard deviation of wet day precipitation and underlying wet day intensity 
distribution shifts are mixed and do not reach statistical significance in the western U.S. Despite these western 
U.S. results, there is a statistically significant change in underlying wet day precipitation intensity distributions 
for all 17 domains analyzed.

Though existing observation-based literature largely focuses on heavy-to-extreme precipitation or arbitrary 
light or moderate thresholds, our findings largely complement earlier findings, such as an east-west division of 
changes in extreme precipitation (Easterling et al., 2017). The relative increases in moderate and heavy precip-
itation we observe in the eastern U.S. mirror well-established increases in precipitation extremes, as well as 
annual precipitation, previously found over central and northeastern portions of the country (e.g., Groisman 
et al., 2012). We highlight the strong consistency in the shift in precipitation intensities across the distributions 
in this area (Figure 2) as well as the rising mean (∼4.5%–5.7%) and standard deviation (∼4.4%–8.7%) of wet 
day precipitation. While not a perfect parallel, the consistent shift from lower to higher intensity events in the 
central and eastern U.S. generally agrees with model-based findings from Dai et al. (2017), who examined U.S. 
precipitation intensities using historical and end-of-the-21st century RCP8.5 projections as boundary conditions 
in convection-permitting simulations (Liu et al., 2017). Dai et al. found robust increases in precipitation intensity 
across the U.S., a pattern we observe only in the central and eastern U.S. The mixed pattern of results we find 
for the western U.S. mirrors earlier observation-based results (Contractor et al., 2021; Higgins & Kousky, 2013; 
Rosenberg et al., 2010). Our analysis furthers this earlier work by using a large number of in situ measurements 
instead of limited stations or gridded products. In addition, we note that Dai et al., along with other modeling 
studies we reference hereafter, use the RCP8.5 high emissions scenario, a pathway viewed as unlikely given soci-
etal trends (Hausfather & Peters, 2020). Despite its unlikelihood, we find it notable that the patterns of observed 
precipitation change presented here parallel RCP8.5-forced projections.

While our work does not assess the drivers of observed precipitation changes, we compare our findings with 
modeling studies to provide mechanistic context, though analogs to our retrospective, observation-based meth-
odology and time periods of analysis are indirect. Pfahl et al.  (2017) combine historical (1950–2005) CMIP5 
output with RCP8.5 emissions scenario (2006–2100) simulations to project a positive scaling of moisture content 
(thermodynamic factor) with temperature throughout the U.S., with enhanced vertical motion (dynamic factor) 
over the western and far eastern U.S. (see Figure S5 in Pfahl et al., 2017). Similarly, Zhang et al. (2021) compare 
historical HadGEM3 output (1900–1959) to end-of-century RCP8.5 emissions scenario projections (2040–2099) 
to find that increases in synoptic-scale precipitation variability over the U.S. are driven by thermodynamic and 
non-linear mechanisms but dampened by dynamic drivers (see Figure 6 in Zhang et al., 2021). Broadly, these 
findings demonstrate a consistent increase in precipitation and synoptic-scale precipitation variability over the 
U.S. driven by thermodynamic influences and a mixture of dynamical influences. While some of the scaling 
unveiled in these previously published model analyses mirror our findings, such as an overlap between thermo-
dynamic drivers and the increases in precipitation intensity we observe across the eastern half of the U.S., further 
work is necessary to explain the mechanisms driving the changes in observed wet day precipitation intensity that 
we find. However, the overall pattern we identify–of a transition from lower-to higher-intensity events–mirrors 
findings from Pendergrass and Hartmann (2014b) for a modeled doubled-CO2 world.

Although we examine precipitation trends during a time of increasing greenhouse gas concentrations, and 
find similarities with greenhouse gas-forced model projections, our analysis is insufficient to directly attribute 
observed changes to ongoing anthropogenic climate change. Such an analysis would require use of a robust 
attribution methodology (e.g., Hegerl et  al.,  1996). In addition, while considering our results, it is important 
to bear in mind that our analysis focuses on changes in wet day precipitation intensity, and therefore does not 
consider underlying changes in precipitation frequency. This distinction is important for considering the impacts 
of these findings in the scope of total annual precipitation, for example. In regions where precipitation intensity 
has increased but precipitation frequency has decreased by an offsetting or greater amount, changes to total 
annual precipitation may appear to run counter to the changes we describe here (e.g., Markonis et al., 2019). It 
is also important to consider potential limitations of this study, beginning with the underlying assumption that 
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NEON domains are internally consistent. While NEON domains are empirically designed to possess internally 
homogeneous climates, there exists some measure of variability within domains, particularly within the varied 
topography of mountainous domains (e.g., Southern Rockies and Colorado Plateau). Additionally, inconsist-
ent station availability may impact domain-level findings and variable station density may inadvertently weight 
domain-level results.

5.  Conclusion
We use curated daily in situ precipitation measurements from the GHCN to examine regional trends in wet day 
precipitation distributions from 1951–1980 to 1991–2020. We reveal significant changes in wet day intensity 
distributions for all 17 NEON domains in the contiguous United States. These nearly ubiquitous changes are 
driven by a general shift from lower to higher intensity wet day precipitation totals particularly within the central 
and eastern U.S. and are largely manifested as increases in the mean and standard deviation of wet day precipi-
tation intensity, though results are mixed in the western U.S. Our findings can help inform an understanding of 
how natural hazards and associated risks have changed over time. Additionally, these results can be compared 
with climate model output to examine the ability of climate models to accurately reproduce observed patterns of 
precipitation change.

Data Availability Statement
Global Historical Climatology Network Daily data is publicly available through the National Centers for Envi-
ronmental Information at https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatolo-
gy-network-daily. Code developed by the authors to conduct the data analysis and visualization within this study 
are publicly available and preserved at https://zenodo.org/badge/latestdoi/463677336 and developed openly at 
https://github.com/ryandharp/Observed_Changes_in_Daily_Precipitation_Intensity_in_the_United_States.
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