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Abstract

Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in
resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding
how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we
describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a
consumer diet and the diet variability among individuals and across levels of population organization. By explicitly
estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population
into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray
wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals,
social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by
accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of
levels of organization to the niche width of a population.
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Introduction

The niche concept, which provides a tractable measure of the

environment encountered by organisms, figures prominently in

ecological and evolutionary theory [1–3]. Dimensions related to

foraging are often emphasized, following the ‘eat or be eaten’

dictum that unites organisms [4]. Much of the literature anchors

the niche to the level of species. However, the niche of a species

is the collective response of individuals, groups, and sub-

populations to complex ecological and evolutionary processes.

Thus, niche differences across relevant levels of population

structure collectively comprise a niche of a species or

population.

The role of individual variation in shaping a population’s niche

was first articulated as a component of Van Valen’s [5] niche

variation hypothesis. Examining the niches of mainland and island

birds, Van Valen proposed that population niche width expansion

can occur via increased among-individual variation in foraging,

such as he observed in island bird populations that were released

from interspecific competition. Recently, Bolnick et al. [6]

reviewed support for the concept of the ‘individual niche’, and

identified evidence from 97 species across a broad range of taxa. In

some of these cases, among-individual foraging niche accounted

for most of the total population niche width.

Social organization and spatial patterns in resources can yield

niche variation at levels above the individual. In social animals, for

example, group membership might exert strong influence on diet.

Individuals that forage together and encounter the same resources

at the same time may have very similar diets, while diets may vary

substantially among social groups. On the other hand, social

foraging might lead to intense intraspecific competition [7,8],

particularly if dominance hierarchies exist and there are quality

differences among prey items [9]. Regardless of sociality, spatial

resource heterogeneity can result in differences in the abundance

of prey available to consumers. These spatial differences in prey

availability likely influence the diets of individuals (e.g. differences

in quality among defended territories) or whole groups of

individuals (e.g. a sub-population occupying marginal habitat).

Indeed, Hutchinson [4] invoked the ‘mosaic nature of the

environment’ in his concept of the niche and the causes of its

variation.

How can trophic niche variation across multiple scales of

population structure be quantified? Elton [2] proposed that the

niche was the sum of all interactions, especially trophic, that links

an organism to all others. The flow of atoms from resources to

consumers can be tracked using measurements of the stable

isotope composition of tissue (reviews in [10,11]). Stable isotope

data thus reflect the feeding behaviors of individuals that share
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otherwise common ecological conditions over long periods,

permitting investigations of intra-population variation [12,13].

There are two general methods for analyzing stable isotope data

in trophic ecology that, until now, have remained mutually

exclusive. First, stable isotope data have been used to quantify the

niche width of consumers [6,12–14] by drawing inference from

patterns in isotope variability exclusive of the underlying trophic

processes (i.e. the contribution of different prey items to a

consumer diet). Second, stable isotope data have been used to

explicitly quantify the contribution of prey to consumers using

mixing models (e.g., [15,16]). While the sophistication of mixing

models has evolved over the last few decades [15,17,18], these

models have not incorporated intra-population variability in

eating patterns; rather, all mixing models have assumed that the

proportional contribution of prey to a consuming population’s diet

is fixed such that all individuals have identical diets. Clearly, an

integrated analytic framework that uses isotope data to estimate

both the niche width and diet composition of consumers would

reduce the assumptions and improve the performance of the two

currently independent methods of analysis.

In this paper we describe a novel analytic framework for using

stable isotope data to infer the prey composition of consumer diets

while simultaneously estimating variability in diet composition

across multiple levels of the consumer’s population structure. By

explicitly estimating the variance components for multiple scales,

the niche width of a consumer population can be deconstructed

into relevant levels of population structure. Our modeling

approach extends the Bayesian stable isotope mixing model

formulation described by Moore and Semmens [15] in three

important ways: 1) it is hierarchically structured in order to

account for differences in diet across multiple levels of population

structure, 2) it incorporates variance in the diet composition of

individual consumers, and 3) it uses explicit model comparison to

quantify the relative support for the competing models. To

demonstrate our approach, we analyze d13C and d15N stable

isotope data from a population of coastal gray wolves (Canis lupus)

with a complex, nested population structure, comprised of 3

subpopulations from different geographic regions, multiple social

groups (packs) within the subpopulations, and multiple individuals

within groups [14]. The new modeling approaches reveal that

variation in feeding habits among subpopulations, social groups,

and individuals all contribute substantially to the niche width of

wolves.

Methods

The incorporation of individual diet heterogeneity and/or

nestedness into a mixing model presents a non-trivial computa-

tional challenge due to the highly constrained covariance structure

of diet compositions (i.e. compositions must sum to unity) and the

resultant non-normal variance associated with compositional data.

Below, we outline two analytic approaches for incorporating diet

variability into hierarchical Bayesian stable isotope mixing models.

In order to use these methods, researchers must have the

following types of information: 1) The means and variances of the

isotopic signatures for all possible prey items (one or more), 2) the

means and variances of fractionation for each isotope (one or

more) 3) the isotope signatures of individual consumers, and 4)

individual assignments to the different levels used in the analysis

(e.g. wolf #1 belongs to the 2nd pack of the 3rd region).

Additionally, if available, these models may be informed by prior

information on the diet composition of consumers. For instance,

Moore and Semmens [15] used gut content data to develop priors

for their analysis. It is important to note that the random effects

models used in our analysis are computationally intensive and

require a considerable amount of data in order to converge. Thus,

while researchers with isotope data from 50 consumers will likely

have success in fitting such multilevel models, researchers with

data from 5 consumers will likely not. In order to facilitate the

application of these models by other researchers, we have

prepared supplemental material (Appendix S1) that includes: 1)

a guide to simulating and fitting hierarchical variation in stable

isotope data, 2) an exemplary problem with associated data, 3)

detailed descriptions of the model likelihood calculations, and 4) a

step-by-step explanation of the model code so that researchers can

quickly and easily interpret and adapt these methods.

Statistical Approach
Our approach extends the stable isotope mixing model

discussed by Moore & Semmens [15]. Model parameters are the

unobserved vector of diet proportions f , representing the relative

contributions of n prey sources
P

f ~1. The sample mean and

variances of the source and fractionation values are treated as

known (m, s2), and used to estimate the means and variances of the

mixture for each of j isotopes:

ûuj~
Xn

i~1

fi mjsourcei
zmjfraci

� �h i
ð1Þ

ŝsj~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

f 2
i s2

jsourcei
zs2

jfraci

� �h is
ð2Þ

Stable isotope data from multiple isotopes are then combined with

the ûu and ŝs to evaluate the normal likelihood, with independence

assumed between isotopes [15,19].

We propose two new techniques for incorporating individual

variation in Bayesian stable isotope mixing models. These

approaches are generic, and may be incorporated into more

complicated models that include multiple levels of nested variation

(subpopulation, individual) or non-nested factors (sex, size class).

The first method introduces variation in individual consumer diets

by modeling diet proportions as a weighted mixture of individual

and group effects using the Dirichlet distribution. A second, and

potentially more flexible approach uses geometric transformations

of f , combined with random effects. These transformations

normalize the compositional parameter space and thus afford

the opportunity to apply standard general linear modeling

methods.

Current tools for mixing models assume all consumers in the

sampled population eat prey sources in the same relative

proportions; in the Bayesian framework, the vector of prey

contributions, f , is assigned a Dirichlet prior distribution [15,19].

One approach to incorporating niche variability into this model

would be to treat the dietary proportions of each individual as

independent Dirichlet distributions. Depending on the degree of

individual variation, an alternative approach is to assume that a

fraction of the diet proportions among all animals is the same, but

the remaining portion of the diet is represented by individual

variation. This latter approach involves modeling individual diet

proportions using a weighted mixture of global and individual

Dirichlet processes. We treat the single shared vector as

f
u
*Dirichlet að Þ, and each individual is allowed to have a unique

vector of deviations, f
i,dev

*Dirichlet að Þ. Diet proportions for

each individual are then estimated as a weighted mixture,

f
i
~v:f

u
z 1{vð Þ:f

i,dev
, where v can be modeled as a continuous

Niche Width from Mixing Models
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(0,1) random variable. The weighted Dirichlet approach can be

easily extended to include more than one level of hierarchical

variation. To build a model of individuals nested within multiple

geographic areas, we allow each area to have a unique mean,

f
u,area

*Dirichlet að Þ. Individual deviations within each area are

weighted by the area-specific mean, rather than the global mean

(in both examples, all individuals share a single value of v).

Our second technique for incorporating variability in diets

among individuals is to use geometric transformations for

compositional data, which have been widely used in the

geosciences [20]. Stable isotope mixing models transform data

from stable isotope d-space to compositional diet p-space [11]; we

build on previous work by applying geometric transformations to

compositional diet proportions. The advantages of using these

transformations are that additional sources of variation may be

easily incorporated, and parameter estimation may be improved.

Proposed transformations include the additive, centered, and

isometric log-ratio transforms (ALR, CLR, ILR, respectively). We

focus on the CLR transformation because it is isometric and treats

components symmetrically [20,21] and because it is numerically

tractable in the mixing model framework (in contrast, the ILR

involves solving polynomial roots). To illustrate a simple example,

consider the basic stable isotope mixing model with no individual

variation [15], where the estimated parameters are the vector of

proportions f for n prey items. Instead of estimating f directly, an

equivalent approach involves the CLR transformation,

clr f
� �

~ ln f1=f ’ð Þ,:::,ln fn=f ’ð Þ½ �, where the proportions are cen-

tered by the geometric mean, f ’~ P
n

i~1
fi

� �1=n

[21].

As an example, consider a 2-isotope mixing model with a

population of consumers that differ individually in their consump-

tion of 4 prey. In CLR transformed space, there are 4 means,

mk*Uniform {10,10ð Þ, k = 1:4. Alternatively, the m may be

assigned Normal priors (with equal or different variances), or if

enough data exist, the means may be jointly assigned a

multivariate Normal distribution. The deviations of each individ-

ual are treated as random effects around the global mean (m). At

the simplest level, deviations for each animal are univariate

Normal with a single variance, dind,k*Normal uk,sindð Þ. Even in

data-limited situations, the assumption of a single variance term

across diet components is reasonable when using the CLR

transformation because dividing by the geometric mean places

diet components on similar scales. With more samples, each of the

transformed variables may be allowed to have a unique variance.

Alternatively, a multivariate approach may be used,

dind*MVNormal m,S
� �

.

Models with random effects may be easily extended to include

multiple levels of variation [22]. Assume that in addition to

individual variation, there is biological justification for including

variation among several geographic areas. In this context, the global

mean (shared between all individuals in all areas) is still assigned a

uniform distribution, mk*Uniform {10,10ð Þ, k = 1:4. Area-specific

deviations are treated as random effects centered around the

global mean darea,k*Normal mk,sareað Þ and individual deviations

are centered around area specific means, dindi ,areag ,k

*Normal dareag ,k,sind

� �
. While it may be possible to share variance

parameters sarea,sindð Þ among levels, doing so prevents quantifying

the relative magnitude of each type of variation, which may be useful

in determining how niches vary by scale.

Hierarchical Models of Wolf Diets in Coastal British
Columbia

To illustrate the applicability of these hierarchical mixing

models, we analyzed stable isotope data collected from a gray wolf

population from coastal British Columbia, Canada. These wolves

consume both terrestrial and marine prey, with the latter showing

elevated carbon and nitrogen isotope signatures compared with

terrestrial foods [23]. These data provide the opportunity to

estimate the contribution of prey with dissimilar isotopic signatures

to consumers while accounting for niche variation at multiple

levels of population organization. The wolves predominantly

consume three prey groups (deer, salmon, and marine mammals;

[14,24,25]). Carbon and nitrogen stable isotope signatures were

estimated from hair samples from 64 wolves, collected over four

years (2001–2004). A more detailed description of these data,

including how wolves and prey were sampled and estimates of

fractionation were applied, is described by Darimont et al. [14].

Individuals from three subpopulations (distinct geographic areas)

were represented in the samples: mainland, inner islands (adjacent

to the mainland), and outer islands. Within these subpopulations,

individuals are organized into known social groups (our analysis

included data from social groups with at least four sampled

individuals). Accordingly, we reasoned that the subpopulation,

social group, and individual levels might all contribute to variation

in estimated diet across the population.

We applied both the CLR and Dirichlet mixture methods

described above to 8 different hierarchical mixing models. The

simplest parameterizations we considered used a single invariant

diet shared between all individuals [15] and the extension of this

same model that includes residual error terms on each isotope

[19]. Residual error accounts for generic, normally distributed

variability in consumer isotope signatures beyond that explained

by the basic mixing model formulation (equations 1–2); this error

parameterization is thus largely phenomenological since it

captures variability in the isotope data, but not variability in

the diet of the consumer. Because we expected the geographic

isolation and ecological context of each subpopulation to play a

large role in shaping niche variation among individuals [14], we

considered models with regional variation alone, pack variation

nested within region, and regional variation in diet with residual

errors on the consumer isotope signatures. Following Bolnick et

al. [6,26], we expected individual variation to play a potentially

large role in shaping niche widths of populations. Accordingly,

three models were constructed to allow for individual variation:

individual variation alone, individual variation nested within

region (no variation among packs within a region), and a 3-level

model nesting individual variation within groups and group

variation within each subpopulation. Support for Van Valen’s [5]

niche variation hypothesis was evaluated by comparing models

that allowed variance parameters to vary spatially (by region) to

models that shared variance parameters among regions. This

allowed us to evaluate whether an area with larger sub-

population niche width also showed greater inter-individual

variation. For this last analysis, wolves from outer islands and

inner islands were combined because of small sample sizes on

outer islands.

Parameter Estimation and Model Selection
For the Dirichlet models, hyperparameters were chosen to be

non-informative (a= 1) and the mixture parameter v was assigned

a Uniform(0, 1) distribution. For all CLR models, uniform priors

were assigned to the highest level mean in the model (global or

region), and all lower level deviations were treated as independent

normal random variables. Uniform priors were assigned to the

standard deviation of all levels of random effects [27], and to the

standard deviation of 6residual error [19]. We used the Deviance

Information Criterion (DIC, [28]) to evaluate which models were

most supported by the data. Gibbs sampling was performed for

Niche Width from Mixing Models
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each model using 3 parallel chains in JAGS [29]. Following a

burn-in phase of 5000 vectors, we sampled 50000 remaining

vectors (retaining every 10th sample) [30]. Convergence and

diagnostic statistics were performed using the CODA package

[31]. Diagnostics for the best model, and open source code for all

interested readers (including R code to simulate data) is provided

at http://www.ecologybox.org.

Results

Wolves of coastal BC showed considerable intrapopulation

variation in trophic niche, which was expressed at multiple levels

of population structure. There was little support for models of wolf

diet that did not include regional variation. For the single-level

models without individual variability, including residual error

terms on isotopes improved model fit substantially (models 2,4;

Table 1). Similarly, residual error terms improved the fit for the

model that included only regional differences in diet, but no

variability in pack or individual diets. These results were likely due

to the high variability in consumer isotope signatures relative to

prey (Fig. 1). However, models with residual error ranked lower

than any of the models that partitioned some of the total variance

to the pack or individual levels (models 5,7,8; Table 1). The model

most supported by the data (i.e. lowest DIC score) was one that

included three hierarchical components of variation: at the

regional, pack, and individual levels (model 8, Table 1, Fig. 2).

While data strongly supported including individual variation, the

posterior median of estimated variability among individuals

(ŝsind~0:39) was smaller than the among-pack variability

(ŝspack~0:62), and both individual and pack variation were much

smaller than regional variation (ŝsregion~1:27, Fig. 3).

Based on the magnitudes of the variance parameters, the

majority of the total variation in the diets of British Columbia

wolves was driven by geographic region. Accordingly, we express

dietary composition data at this scale. For the mainland

subpopulation, median posterior estimates indicated deer repre-

sented the largest proportion of the diet (,88%), while salmon

(,4%) and marine mammals (,7%) represented only modest

dietary proportions (Fig. 4). For the inner island subpopulation,

there was a dramatic shift to increased use of oceanic prey;

approximately 24% of the diet from deer was replaced by salmon

and marine mammals (Fig. 4). Outer island wolves appeared to

consume even more marine resources, with salmon and marine

mammals contributing a combined 43% of the diet (Fig. 4,

Table 2).

Three models were compared to evaluate support for Van

Valen’s [5] niche variation hypothesis: we compared the best

model with a shared individual variance across regions (Table 1,

Model 8, DIC = 325.6) to models that assigned different pack level

variance or individual level variance to wolves from islands (both

inner and outer) versus wolves on the mainland. Each of these

models introduced one additional parameter. While there was

little support for allowing differences in group level variances

(DIC = 325.7), there was strong support for a model allowing

mainland and island wolves to have different levels of individual

variability from the pack mean (DIC = 322.2). This latter model

estimated variation among individuals on islands to be larger than

variation among individual mainland wolves (ŝs~0:41,0:15). Thus,

islands wolves, which had wider sub-population niche width, also

showed greater among-individual variation.

Discussion

The evolution of stable isotope analyses continues to yield

powerful tools for inferring trophic ecology based on the

chemical composition of consumers and prey. Our modeling

approach is unique in that it can simultaneously estimate not

only the composition of a population’s diet but also the variation

in diet among several nested components of the population. This

integrated analytic framework improves the ability of mixing

models to account for dietary variability, and the ability of

isotope niche width analysis to directly assess the trophic links of

a population. We applied this modeling approach to a coastal

population of gray wolves with multiple levels of population

structure (e.g., individual, pack, region), and found that

individual dietary variability drives niche width expansion on

islands.

Quantifying inter-individual niche variation can play a critical

role in understanding a population’s niche width [6]. Previous

studies have typically relied on measures of proportional similarity

among diets of individuals as a proxy for variance [32,33]. Bolnick

et al. [6] and Bearhop et al. [13] proposed that stable isotopes can

be used to quantify specialization by comparing the variability in

individual isotopes to the total isotopic variability of the

population. However, consumer isotope variability is influenced

both by individual differences in consumer diet and the variation

in isotope signatures of prey items [34]. Thus, comparisons of

Table 1. Summary of results for 8 stable isotope mixing models explaining variation in diet for 64 wolves in British Columbia.

Dirichlet CLR

Model Region Pack Individual Residual DIC Region Pack Individual Residual DIC

1 N N N N 1142.30 N N N N 1342.74

2 N N N Y 586.20 N N N Y 585.05

3 Y N N N 692.22 Y N N N 693.10

4 Y N N Y 512.40 Y N N Y 512.12

5 Y Y N N 501.16 Y Y N N 502.21

6 N N Y N 347.78 N N Y N 334.57

7 Y N Y N 338.91 Y N Y N 332.51

8 Y Y Y N NA Y Y Y N 325.56

Models may include variation among regions, packs (social groups), individuals, or residual error. The Deviance Information Criterion is used to evaluated data support,
with smaller values signaling stronger support from the data. Two approaches to dealing with compositional data (Dirichlet mixtures or CLR transformed data) yielded
similar results (NAs represent models with convergence issues).
doi:10.1371/journal.pone.0006187.t001

Niche Width from Mixing Models
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niche width across study groups (e.g., populations) based on

isotope variability may be confounded by differences in the isotope

variability of their respective prey resources. Araújo et al. [12]

developed a methodology that uses dietary data to construct a null

model of niche width against which observed carbon isotope

variability is compared, thus incorporating both prey and predator

isotope signatures. However, this method depends on correspond-

ing dietary information and also is constrained to the use of one

Figure 2. Ternary plots of posterior estimates of the proportional contribution of three prey types to the diet of wolves. Shown are
posteriors for each region (aggregated across individuals) and medians (symbols denote group membership for individual wolves).
doi:10.1371/journal.pone.0006187.g002

Figure 1. Stable isotope inputs to the hierarchical mixing model for B.C. wolves. Data derived from three regions (mainland, inner islands
adjacent to the coast, outer islands). Prey items from each region have unique means (solid dots) and standard deviations (dashed lines) in each
isotope dimension. For wolves (n = 64), symbols are used to depict group (pack) membership.
doi:10.1371/journal.pone.0006187.g001

Niche Width from Mixing Models
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isotope without fractionation. Newsome et al. [11] suggested using

the products of isotopic linear mixing models (i.e., estimates of

proportional contributions of prey) to calculate intra- and inter-

population niche variability. However, deterministic mixing

models do not incorporate potentially large sources of uncertainty

such as too many sources, variation in fractionation, and prey

isotope signatures [15].

Here we build on these previous methods by introducing two

mechanistic approaches (Dirichlet mixture and CLR transform)

to modeling individual variability within a hierarchical Bayesian

mixing model framework. By modeling variation in diet across

levels of population structure (e.g., individual, group, popula-

tion), these approaches offer the ability to quantify the niche

width of a consumer based on explicit estimates of the variability

in source contributions to diet, as opposed to implicitly assuming

that the variability in the isotope signatures of consumers directly

reflects variability in diet. Estimating these additional levels of

diet variation necessarily increases model complexity, requiring

more careful consideration of data support. Data support for

alternative levels of variation may be evaluated by comparing a

suite of alternative models, as illustrated in our analysis of gray

wolf data.

We anticipate that the approaches we outline here will assist in

the application of isotopes to characterizing dietary variability

within and between populations. While the quantitative methods

we have outlined build upon previous efforts, they are still limited

by basic assumption inherent to isotope mixing models [35,36].

For example, we have assumed that prey sources are known and

their isotopic signatures are quantified on an appropriate

temporal and spatial scale [37], that prey sources are distinct

enough to allow for source partitioning [13], that there is no

concentration dependence [38] or tissue compartmentalization in

mixing processes [35], that isotopic fractionation values are

correctly quantified [39] and fractionation does not vary across

populations [34]. While these assumptions are standard in mixing

models, violations can influence model results. Both the Dirichlet

Figure 3. Estimated posterior density for the standard deviation parameters controlling the variation in diet across three scales
(sub-population, social group, individual). Posterior densities are estimated from the model with the lowest DIC value, with medians indicated
by dashed lines.
doi:10.1371/journal.pone.0006187.g003

Niche Width from Mixing Models
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Figure 4. Region-specific posterior contributions of three prey items consumed by coastal wolf populations (deer, marine
mammals, salmon). Posterior densities are drawn from the model with the lowest DIC value. Dashed lines depict the global median across three
regions (mainland, inner islands adjacent to the coast, outer islands).
doi:10.1371/journal.pone.0006187.g004

Table 2. Posterior estimates of diet proportions by region (subpopulation) for a coastal grey wolf population in British Columbia
(n = 64).

Subpopulation Deer Marine mammals Salmon

Mainland (n = 19) 0.882 (0.075) [0.670–0.959] 0.071 (0.070) [0.008–0.268] 0.035 (0.046) [0.001–0.162]

Inner islands (n = 40) 0.672 (0.101) [0.448–0.849] 0.291 (0.098) [0.124–0.513] 0.030 (0.033) [0.001–0.118]

Outer islands (n = 5) 0.527 (0.193) [0.153–0.874] 0.333 (0.169) [0.071–0.720] 0.075 (0.135) [0.001–0.499]

The median estimates of each prey item are given along with standard errors (parentheses) and 95% posterior intervals. All summary statistics are all generated from
Figure 4.
doi:10.1371/journal.pone.0006187.t002

Niche Width from Mixing Models
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mixture and CLR transform approaches appeared to work

equally well (Table 1). However, because the CLR transform

offers a more straightforward (linear) implementation, we

anticipate future mixing model applications will rely principally

on this approach. We note here that the CLR transform method

can be used in mixing models with or without individual

variability.

Using the same isotope data we analyzed, Darimont et al. [14]

also found evidence supporting the niche variation hypothesis

(estimated using isotopic variability, island wolves exhibited both

the largest niche width and greatest among-individual variation;

Fig. 1). The key difference, however, between the approach in

Darimont et al. [14] and the hierarchical mixing model presented

here is that the latter explicitly evaluates niche width based on diet

proportion variability (estimated from a mixing model), rather that

niche width based on isotope variability as a proxy for diet

proportion variability. This is an important distinction because

consumers in different regions may consume prey with more or

less isotopic variation. In other words, it is possible that consumers

on islands had broader isotopic variability due to the broader

isotope variability of prey, and not because their diets were more

variable.

Previous tests of Van Valen’s [5] niche variation hypothesis

have used morphological measurements or resource use [26]; our

hierarchical models allow a quantitative evaluation of this

hypothesis using mixing models with stable isotope data. Although

a comparison of only two regions (mainland, island) is not a robust

test of the niche variation hypothesis, we found additional and

direct support for trophic niche expansion in wolves, with island

wolves – that showed the larger niche width – also exhibiting more

intra-group diet variability than wolves from the mainland (Fig. 5).

Understanding the relative contribution of different sources of

variation in niche has important implications for community,

evolutionary, and conservation ecology [5,6,25,34,40–44]. The

mixing models we have detailed allow explicit quantification of

dietary variability across multiple scales (population, group,

individual) and diet estimates for each consumer. Because the

model tools are highly flexible, they can be widely applied to any

ecosystem, or more generally, to any ecological problem that relies

on compositional data, structured hierarchically or not. For

example, our approach would support examinations of niche

variation as influenced by age [45], sex [46], morphology [47],

genotype (review in [48]), and even cultural heritage [49].

Furthermore, the model selection framework employed here

allows the explicit evaluation of model complexity based on data

support. By incorporating dietary variability into the isotope

mixing model framework, we have provided the tools necessary to

assess the niche width of a consumer population based on

variability in diet, rather than variability in isotope signatures. We

anticipate that the application of these approaches will yield

important advances in the application of isotope data in

evolutionary ecology and conservation.

Figure 5. Posterior distributions of variation in individual diets for island and mainland wolves (median represented with dashed
line). The variability for each region represents the deviation in diet from the social group (pack) diet.
doi:10.1371/journal.pone.0006187.g005
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