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Abstract. Generalist predators can contribute to extinction risk of imperiled prey populations even

through incidental predation. Quantifying predation on small populations is important to manage their

recovery, however predation is often challenging to observe directly. Recovery of prey tags at predator

colonies can indirectly provide minimum estimates of predation, however overall predation rates often

remain unquantifiable because an unknown proportion of tags are deposited off-colony. Here, we

estimated overall predation rates on threatened wild juvenile steelhead (Oncorhynchus mykiss) by generalist

adult Western Gulls (Larus occidentalis) in six central California (USA) watersheds. We estimated predation

rates by gulls from the recapture of PIT (passive integrated transponder) tags that were originally inserted

into steelhead and were subsequently deposited at a Western Gull breeding colony, Año Nuevo Island

(ANI). We combined three independent datasets to isolate different processes: (1) the probability a tagged

steelhead was consumed during predation, (2) the probability a consumed tag was transported to ANI, and

(3) the probability a transported tag was detected at ANI. Together, these datasets parameterized a

hierarchical Bayesian model to quantify overall predation rates while accounting for tag loss between when

prey were tagged and subsequent tag detection at ANI. Results from the model suggest that low recovery

rates of PIT tags from steelhead at ANI were mostly driven by low probabilities of transportation (�0.167)
of consumed tags to ANI. Low transportation probabilities equate to high per-capita probabilities of

predation (�0.306/yr) at the three watersheds in closest proximity to ANI, whereas predation rates were

uncertain at watersheds farther from ANI due to very low transportation rates. This study provides the

first overall estimate of Western Gull predation rates on threatened wild juvenile steelhead and suggests

gull predation on salmonids is a larger source of mortality than was previously estimated from minimum

predation rates. This study thus represents an important example of high rates of incidental predation by a

generalist consumer on an imperiled prey and provides a quantitative framework to inform robust

estimates of predation rates on small populations that can be applied to other systems where direct

observation of predation is not feasible.
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INTRODUCTION

Predation on imperiled populations may con-
tribute to extinction risk or limit their recovery. In
some cases, small prey populations may be
relatively buffered from predation when refuges
are available or if predators switch to target more
abundant prey (Holling 1959, Ackerman 2002,
Twardochleb et al. 2012). Furthermore, if preda-
tors are specialists, their populations may decline
following the decline of their prey, thereby
reducing predation rates (Elton and Nicholson
1942, Hanski et al. 2001). Alternatively, if
generalist predators continue to prey on small
populations, these prey populations may suffer
local extinction (Spiller and Schoener 1998) or
may experience further population decline even
when predation is incidental (Vickery et al. 1992).
In these scenarios, there may be few prey
individuals relative to the number of predators,
and even incidental predation can result in high
predation rates (Wittmer et al. 2005). Therefore,
the role of predation by generalist predators can
be an important factor in the dynamics of small
prey populations.

Quantifying predation rates on imperiled
populations is often difficult as predation is a
rare event with few prey relative to predators.
For this reason, researchers have applied a
variety of approaches to estimate predation rates
indirectly. Estes et al. (1998) estimated predation
rates on sea otters (Enhydra lutris) by comparing
long-term population trends in locations with
and without predatory killer whales (Orcinus
orca). Visual observations and bioenergetics
models were combined to quantify the impact
of killer whale predation on sea otter populations
(Estes et al. 1998, Williams et al. 2004). Alterna-
tively, Fernández-Olalla et al. (2012) combined
long-term monitoring of population decline of a
vulnerable grouse species (Tetrao urogallus) with
the removal of mesopredators to quantify the

impact of predation on the grouse population
growth rate which guided management strate-
gies for population recovery. In both studies,
long-term datasets and natural or intentional
experiments facilitated quantification of the
impact of predators on the decline of native prey.
However, long-term population data are rare,
especially in conjunction with manipulations of
predator populations. Therefore, estimating pre-
dation in the absence of long-term data may be
necessary to identify significant sources of
mortality for populations at risk of extirpation.

In systems with central-place foragers, the
return of predators with prey items to their
roosting or nesting sites can be used to estimate
rates of predation. Specifically, where prey can be
uniquely marked with identification tags, recov-
ery of regurgitated or defecated prey tags at
predator roosting or breeding sites can be used to
quantify minimum predation rates. This method
has been applied in freshwater and marine
systems where fish tags were recovered within
colonies of piscivorous avian predators (e.g.,
Evans et al. 2011, Frechette et al. 2012). For
example, passive integrated transponder (PIT)
tags are often used to individually mark juvenile
salmonids (Oncorhynchus spp). These tags can be
subsequently detected at piscivorous avian pred-
ator colonies once predators have regurgitated or
defecated the consumed tag. For example, by
using the recovery of PIT tags, Evans et al. (2012)
estimated that predation by Caspian Terns
(Hydroprogne caspia) and Double-crested Cormo-
rants (Phalacrocorax auritus) constitute between
2.5% and 16% of juvenile salmonid mortality in
the Columbia River. Because PIT tags are passive
and therefore cannot be detected remotely,
estimates of predation rates using recoveries of
prey tags require that tags are (1) consumed
during predation, (2) transported to the predator
colony, and then (3) successfully detected at the
colony with a mobile PIT tag antenna (Fig. 1).
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Successful recoveries of tags, therefore, only

represent consumed tags that undergo all three

steps and therefore do not include tags that were

lost between steps. Thus, as acknowledged by

previous studies, predation estimates from tag

recoveries only represent minimum predation

rates (Evans et al. 2012, Frechette et al. 2012). To

this point, no peer-reviewed study has incorpo-

rated estimates of these three processes and their

uncertainty to estimates of predation.

Pacific salmon and steelhead (Oncorhynchus

mykiss) populations along the west coast of North

America have declined over the last century due

to destruction of habitat, climate change, artificial

propagation from hatcheries, construction of

dams, over-harvest, and other anthropogenic

and natural factors (Ruckelshaus et al. 2002,

Gustafson et al. 2007). Consequently, approxi-

mately half of the unique Pacific salmon popu-

lations in the United States (managed as

Fig. 1. The three-step process for how PIT tags from tagged juvenile salmonids are recaptured on avian

predator colonies, where each step has its own probability of occurrence. For a PIT tag to be recaptured at an

avian predator colony, a PIT-tagged salmonid first has to be consumed by an avian predator (with probability h),
transported to the predator colony (with probability /), and then detected on the colony (with probability w).
Therefore, the probability of recapturing a PIT tag from a tagged salmonid is the probability, or product, of all

three steps occurring (with probability h/w).
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Evolutionary Significant Units for salmon or
Distinct Population Segments for steelhead) have
been listed as threatened or endangered under
the Endangered Species Act (Good et al. 2005).
Whereas anthropogenic factors have substantial-
ly reduced many salmon populations (Sheer and
Steel 2006, Selbie et al. 2007), the added impacts
of predation may drive further population
decline or impede recovery. Concerns regarding
the impact of avian predation on salmonid
populations has resulted in extensive research
in large river systems such as the Columbia River
Basin (Collis et al. 2001, Antolos et al. 2005, Good
et al. 2007, Evans et al. 2012) and the Sacramento-
San Joaquin River Basin (Evans et al. 2011,
Adrean et al. 2012), whereas relatively little is
known about the impact of avian predators on
salmonids in the many small coastal watersheds
along the coast of California (but see Frechette et
al. 2012). California salmon populations are at
the southern extent of the species’ ranges and are
of particular concern as many populations are
declining (Moore et al. 2011). For example,
coastal populations of endangered coho salmon
in small central California watersheds are near-
ing extinction (Miller 2010). Due to a lack of data
on natural sources of mortality, the recently
released central coast coho salmon recovery plan
recommended an assessment of avian predation
on coho salmon to determine the impact preda-
tion has on salmon mortality (National Marine
Fisheries Service 2012). Therefore, quantifying
predation on imperiled populations of salmon
may identify a critical factor that influences their
recovery or extirpation.

Here we estimate predation rates on imperiled
populations of threatened wild juvenile steelhead
by adult Western Gulls (Larus occidentalis) in
central California watersheds. Western Gulls are
abundant generalist predators that feed on trash,
carrion, and are known to prey on outmigrating
juvenile salmonids (Frechette et al. 2012). In this
study, we ask: what are overall predation rates
by Western Gulls on wild juvenile steelhead and
how do predation rates by these central-place
foragers vary among watersheds and years? We
use a large dataset of tagged juvenile steelhead
and associated recaptured tags at Año Nuevo
Island (ANI) where a large Western Gull colony
is located to provide estimates of predation. We
develop a Bayesian model that integrates three

datasets to provide estimates of gull predation
that account for tag loss between the initial PIT
tagging of juvenile steelhead and the subsequent
detection of PIT tags at ANI. These methods
provide the first overall estimate of adult
Western Gull predation rates on threatened
populations of central California coast steelhead.
From a methodology perspective, this research
highlights the importance of estimating multiple
processes of unobserved tag loss and using a
robust quantitative framework to accurately
estimate predation rates.

METHODS

Study system
We studied six coastal watersheds within San

Mateo and Santa Cruz counties (California, USA)
and Año Nuevo Island (ANI), a small island (10
ha) located 1.6 km off Point Año Nuevo (Fig. 2).
ANI provides habitat to many species of seabirds
and marine mammals, and is one of the three
largest Western Gull colonies in central California
(Carter et al. 1992, Capitolo et al. 2009). All six
study watersheds (Gazos Creek, Waddell Creek,
Scott Creek, San Lorenzo River, Soquel Creek,
and Aptos Creek) drain directly into the Pacific
Ocean and support wild populations of threat-
ened central California coast steelhead. The
populations of steelhead in the study watersheds
are small; for instance, the abundance of adult
steelhead in Scott Creek from 2004 through 2012
ranged from only 109 to 440 individuals (S. A.
Hayes, unpublished data). We focused on wild
juvenile steelhead for this study because they are
the only salmonid species present at all six study
watersheds. It is worth noting that Scott Creek
also supports hatchery-raised steelhead and a
small run of wild and hatchery-raised endan-
gered coho salmon (Oncorhynchus kisutch). The
Scott Creek population of coho salmon is
generally recognized as the southernmost popu-
lation of coho (Federal Register 2005) and
although they are also likely exposed to gull
predation, their numbers are too small to
quantify predation.

The study region is dominated by a Mediter-
ranean climate with warm dry summers and
mild wet winters. Stream flow in the study creeks
varies with episodic rainfall in the winter,
whereas in the late summer and fall the
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combination of low stream flow and oceanic
wave action at creek mouths result in a bar-built
estuary that creates a freshwater lagoon. Typi-
cally, sand bar formation creates a barrier
between creek surface flow and the ocean,
thereby restricting the timing of juvenile salmo-
nid outmigration to the winter and spring
seasons when the creeks are connected to the
ocean (Bond et al. 2008, Hayes et al. 2008, 2011).

During the juvenile salmonid outmigration
period (typically December through June), West-
ern Gulls use shallow creek mouths to drink,
bathe, and opportunistically prey on outmigrat-
ing juvenile salmonids as they migrate to the
ocean (Fig. 3). Therefore, Western Gulls prey
primarily on juvenile steelhead after steelhead
survived the mortality bottlenecks within their
first year of life and completed the freshwater
rearing phase of their lifecycle. The number of
adult Western Gulls breeding at ANI increased
by almost an order of magnitude from 1976 to
2003 (Thayer and Sydeman 2004). This increase
is possibly due to accessibility of anthropogenic

food sources, including local waste management
facilities (i.e., landfills), which may subsidize the
gull population and could contribute to inciden-
tal predation and local extinction of steelhead
populations (A.-M. K. Osterback, unpublished
data).

There is both direct and indirect evidence that
Western Gulls are predators of juvenile salmo-
nids in the study region. First, we directly
observed both juvenile and adult Western Gulls
feeding on outmigrating juvenile salmonids at
the shallow mouth of Scott Creek (Frechette
2010). These predation events were infrequent or
sporadic enough that quantifying predation rates
through direct observation alone was not feasi-
ble. Second, we previously documented that
between 0.1 and 4.6% of all PIT tags from
juvenile salmonids from each of the six study
watersheds were detected at ANI (Frechette et al.
2012). Although other species of piscivorous
birds and mammals use ANI for breeding and
roosting habitat, we identified adult Western
Gulls as the primary predator species and age

Fig. 2. Location of the six central California (USA) watersheds (Gazos Creek, Waddell Creek, Scott Creek, San

Lorenzo River, Soquel Creek, and Aptos Creek) and the seabird breeding colony (Año Nuevo Island) that

compose the study area.
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class responsible for deposited PIT tags at ANI
(Frechette et al. 2012, Hayes et al. 2012). The
predation rate estimates reported by Frechette et
al. (2012) represent minimum estimates because
PIT tags were recaptured after being consumed
during predation by a gull, transported to ANI,
and subsequently detected at ANI (Fig. 1). As a
result, overall predation rates are potentially
much higher than the reported minimum preda-
tion rate estimates.

Data collection and modeling
We combined three independent datasets to

parameterize the variables required to estimate
overall predation rates of juvenile wild steelhead
by adult Western Gulls at each of the six study
watersheds. We describe the first two datasets in
turn. The third dataset is from a previous study
(Frechette et al. 2012) and is incorporated in the
model parameters. We then detail a model for
estimating predation rates from these data.

Therefore this study evaluates all three steps of
tag recapture at ANI, and quantifies the proba-
bility tagged steelhead were preyed on, trans-
ported to, and detected at ANI (Fig. 1).

Steelhead tag recapture study.—We and the
National Marine Fisheries Service (NMFS) PIT-
tagged wild juvenile steelhead in the six study
watersheds and subsequently scanned ANI
annually to detect any deposited PIT tags that
were regurgitated or defecated by Western Gulls.
This component of the study represents the
recapture probability, which is the net probability
of predation, transportation, and detection prob-
abilities (Fig. 1). PIT tagging of juvenile steelhead
in the study watersheds was conducted by the
NMFS between 2003 and 2011. Fish were
captured through a combination of downstream
migrant trapping, beach seining, and backpack
electrofishing. At Gazos Creek, San Lorenzo
River, and Aptos Creek, juvenile steelhead were
captured exclusively in the lagoon by beach

Fig. 3. A photo taken at the mouth of Scott Creek, just before the creek enters the ocean. Hundreds of Western

Gulls congregate at shallow creek mouths to bathe, drink, and opportunistically feed on items that are

transported downstream by stream flow, including outmigrating juvenile salmonids.
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seining. Although fish were also captured with
beach seining in the lagoons of the other three
watersheds (Waddell, Scott, and Soquel Creeks),
steelhead were also captured in downstream
migrant traps in the creek mainstem (Waddell
and Scott Creeks only) and during electrofishing
surveys in the upper watershed (Scott and Soquel
Creeks only). Individuals tagged in the lagoon
are predominately age 0þ and age 1þ steelhead,
whereas individuals tagged in the creek main-
stem and upper watershed include the entire
range of age classes, some of which may never
attempt to out-migrate (Hayes et al. 2008).
Therefore, our estimates reflect Western Gull
predation on the entire tagged wild juvenile
steelhead population in each watershed as they
migrate out to the ocean. All juvenile steelhead
were handled according to Hayes et al. (2004),
where date, time, watershed, and morphometric
features (fork length and weight) were recorded
for each fish. We quantified watershed distance
as the linear distance of the creek mouth to Año
Nuevo Island (ANI). Beginning in 2006, we
scanned ANI annually to recapture deposited
PIT tags. We conducted scans by traversing the
entire island with a mobile PIT antenna (for
equipment specifications, see Bond et al. 2007)
and GPS to mark location and identification of
deposited tags (for more details, see Frechette et
al. 2012). Because annual scans at ANI did not
begin until 2006, we excluded from our analysis
all steelhead PIT-tagged prior to 2005. This was
done to avoid the complication of potential loss
of tags to wave action or burial in years prior to
annual scanning that could skew recapture rates
for those years.

To account for the variation in outmigration
timing of juvenile steelhead, we assigned each
steelhead an outmigration year based on the date
each fish was last handled and the date of lagoon
closure at Scott Creek. For example, tagged
juvenile steelhead last handled prior to lagoon
closure (January until lagoon closure) were
assumed to out-migrate that same calendar year
before low stream flow resulted in lagoon
closure. Tagged juveniles last handled after
lagoon closure were categorized as outmigrants
in the following year because outmigration
cannot resume until the following winter when
adequate rainfall opens the lagoon and recon-
nects the creek with the ocean. The date of lagoon

closure at Scott Creek was applied to the other
five watersheds because consistent data are
lacking on the timing of lagoon closure at other
sites.

Transportation (‘‘hotdog’’) experiment.—In 2010,
we fed between 43 and 586 PIT tags to adult
Western Gulls at each creek mouth and then
subsequently scanned ANI to quantify the
proportion of experimental tags that were suc-
cessfully transported and detected on the island.
Therefore this experiment evaluated the last two
steps of tag recapture at ANI: transportation and
detection (Fig. 1). From 18 March 2010 through 7
July 2010, we fed gulls at two watersheds on each
sampling day using stratified sampling to ran-
domly select watershed and order (first or second
site of the day). Stratified sampling was conduct-
ed to minimize effects of season and time of day
on transportation rates by ensuring that all sites
were visited at least once before any one site was
revisited, and all sites were visited with a similar
representation of first or second feedings of the
day. PIT tags were fed to gulls at creek mouths
using two different vehicles of delivery. For the
first method, PIT tags were inserted into minia-
ture hotdogs (Hillshire Farm Beef Lit’l Smokies)
and tossed out with a folding slingshot to
maximize the number of different individual
gulls that ingested tags. Hotdogs were used as an
economical way to deliver PIT tags to gulls. We
also inserted PIT tags into pre-thawed Icelandic
capelin (Mallotus villosus) in a paired experiment
to evaluate whether hotdogs were appropriate
substitutes for PIT-tagged fish. The Icelandic
capelin is a pelagic fish similar in size and shape
to juvenile steelhead. The two delivery methods
(hotdogs and capelin) were used as proxies for
juvenile steelhead since feeding tagged juvenile
steelhead to avian predators was not permitted
due to the threatened status of these fish. A
primary observer directly observed tag consump-
tion by gulls with the unaided eye and a second
observer confirmed each consumption event
using 8 3 42 binoculars. Species and age class
were recorded for each bird that consumed an
experimental tag, and the total count of each
species and age class of all birds at the creek
mouth were recorded at each site after all tags
were fed.

To evaluate whether feed type, time of day, or
season influenced transportation rates of PIT tags
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to ANI, we conducted paired analyses at the
three most northern watersheds: Gazos Creek,
Waddell Creek, and Scott Creek. We evaluated
these comparisons at the northern watersheds
only because we postulated watersheds closer to
ANI would have the highest transportation rates
and therefore yield a larger sample size to
adequately address these comparisons. We eval-
uated the influence of feed type on transportation
rates by feeding both hotdogs and Icelandic
capelin at all three of these watersheds. To
evaluate whether time of day influences trans-
portation rates, we also conducted paired even-
ing (between 18:00 and 19:00) and subsequent
morning (between 07:00 and 11:00) feedings at
Gazos Creek. We also compared transportation
rates between seasons at Waddell Creek in order
to capture variation in transportation rates due to
different periods of juvenile salmonid outmigra-
tion activity, such as (1) the peak outmigration
period (March–May), and (2) after the comple-
tion of outmigration (June–July). To reflect these
different outmigration periods, seasonal feedings
were categorized into Spring (2 April 2010
through 7 May 2010) and Summer (16 June
2010 through 6 July 2010) at Waddell Creek.
After completion of the feeding experiments, we
scanned Año Nuevo Island for PIT tags from
hotdogs and Icelandic capelin. The entire colony
was scanned twice, once during 2010 and once
during early 2011, to increase our probability of
detecting deposited experimental tags.

We restricted our analysis of predation and
transportation rates to experimental PIT tags
eaten by adult Western Gulls only, because they
overwhelmingly represent the dominant species
and age class of gulls that use ANI for breeding
and roosting habitat and were identified as the
dominant species and age class responsible for
tag deposition at ANI (Frechette et al. 2012). If an
adult Western Gull was uniquely identifiable
(e.g., natural external markings or location
during feeding) and ate more than one tag
during a single feeding event, we only included
one tag in the analysis to preserve sample
independence. Additionally, we restricted the
analysis to fed PIT tags where the observers
were confident of bird species identification, age
classification, and confirmation that the tag was
consumed. Therefore, we excluded tags from our
analysis that were either out of the observers’

sight before being consumed by a gull or when
gull species and age class were uncertain. We
used a Fisher’s exact test to evaluate whether
adult Western Gulls exhibited significantly dif-
ferent transportation and detection rates depend-
ing on differences in feed type, time of day, or
season of each feeding.

Estimating transportation and predation.—In this
section, we present a hierarchical Bayesian method
to combine all three datasets to estimate the annual
predation rate of adult Western Gulls on wild
juvenile steelhead at each watershed, and when
possible, each year. We assigned hiy as the
probability that a wild PIT-tagged juvenile steel-
head is consumed by an adult Western Gull in
outmigration year y at watershed i. Let /i be the
probability that a tagged steelhead is transported
to ANI given it was consumed at watershed i, and
w be the probability that a PIT tag is detected at
ANI given it was transported to the island. The
parameters hiy, /i, and w are bounded between 0
and 1. Assuming independence among the three
steps of predation (hiy), transportation (/i), and
detection (w), the probability of recapturing a PIT
tag from a steelhead tagged at a given site and
year is the product of these three probabilities:
hiy/iw. Similarly, the probability of observing a PIT
tag from a tagged hotdog or capelin at ANI that
was fed to an adult Western Gull is /iw because all
PIT tags included in the analysis were consumed
by a gull in this experiment and therefore hiy¼ 1.
For the probability of detecting a PIT tag that had
been deposited at ANI (w), we used the estimated
probability of tag capture (0.644 6 0.083 SE)
reported by Frechette et al. (2012). Briefly, this
detection probability was generated using the
POPAN variant of the Jolly-Seber model within
Program MARK, for combined PIT tag recapture
data from all six study watersheds during scans of
ANI conducted between 2006 and spring 2009 (see
Frechette et al. 2012 for detailed methods). From
surveys of ANI, we observed kiy PIT tags from
tagged steelhead out of niy deployed during
steelhead tagging (see Table 1 for sample sizes)
and observed li PIT tags from tagged hotdogs or
capelin out of mi that were fed to adult Western
Gulls during the transportation experiment (see
Table 2 for sample sizes).

We assume the probability of transportation is
a smooth function of the distance of each site
from ANI in kilometers di, and can be modeled as

v www.esajournals.org 8 September 2013 v Volume 4(9) v Article 116

OSTERBACK ET AL.



a logistic function

/i ¼
1

1þ expð�ðaþ bdiÞÞ
: ð1Þ

We estimated the predation rate hierarchically

at the two sites for which we have at least four

years of salmonid PIT tags detected at ANI

(Waddell Creek and Scott Creek) and only

estimated a single hi at the remaining four sites.

For hierarchical sites, we modeled the predation

rate in each year as a draw from a site-specific

beta distribution, hiy ; Beta(cidi ). This formula-

tion allows for inference about among-year

variation in predation at each site.

We were interested in estimating the joint

posterior distribution of all of the parameters

given the observed data. Throughout, bold

symbols indicate vectors. For notational simplic-

ity let X indicate the set of non-hierarchical

parameters, X ¼ fa, b, wg and x indicate the

observed data, x¼ fk, n, l, m, dg. Then p(X, h, c,
djx) is the joint posterior distribution of the

parameters given the data, p(xjX, h, c, d) is the

joint likelihood, and p(X, h, c, d) is the joint prior

distribution for the parameters. By Bayes’ theo-

rem,

pðX; h; c; djxÞ} pðxjX; h; c; dÞpðX; h; c; dÞ

} pðxjX; hÞpðhjc; dÞpðX; h; c; dÞ ð2Þ

with the second line in Eq. 2 showing how the
likelihood can be factored into two components.
The second term, p(hjc, d), is the beta likelihood
for the hierarchical parameters. For a single site i,

pðhijci; diÞ}
YY

y¼1

Cðci þ diÞ
CðciÞ þ CðdiÞ

ðhiyÞci�1ð1� hiyÞdi�1

ð3Þ

where Cð Þ indicates the gamma function and Y is
the number of years observed. For the sites
where we do not estimate hierarchical parame-
ters and assume p(hjc, d) is proportional to 1.

The first component of the likelihood, p(xjX, h)
is the product of two binomial likelihoods
corresponding to the steelhead tag recaptures
and transportation experiments, respectively,
where I indicates the total number of sites,

pðxjX; hÞ}
YI

i¼1

YY

y¼1

h
ðhiy/iwÞkiyð1� hiy/iwÞniy�kiy

i

3
YI

i¼1

h
ð/iwÞ

lið1� /iwÞ
mi�li

i
: ð4Þ

Table 1. Sample sizes for the steelhead tagging experiment during each outmigration year from 2005 through

2011 at each of the six study watersheds.

Watershed

Outmigration year

Total2005 2006 2007 2008 2009 2010 2011

Waddell
Tagged . . . 153 . . . 556 631 192 . . . 1532
Detected . . . 10 . . . 5 22 24 . . . 61

Gazos
Tagged 474 68 . . . . . . . . . . . . . . . 542
Detected 16 3 . . . . . . . . . . . . . . . 19

Scott
Tagged 947 1199 1204 1856 1501 1981 940 9628
Detected 5 26 9 5 21 31 37 134

San Lorenzo
Tagged 252 9 . . . . . . . . . . . . . . . 261
Detected 1 0 . . . . . . . . . . . . . . . 1

Soquel
Tagged 823 1068 850 680 185 274 524 4404
Detected 1 1 1 0 0 0 0 3

Aptos
Tagged 222 112 . . . . . . . . . . . . . . . 334
Detected 0 0 . . . . . . . . . . . . . . . 0

Totals
Tagged 2718 2609 2054 3092 2317 2447 1464 16701
Detected 23 40 10 10 43 55 37 218

Notes: ‘‘Tagged’’ is the total number of wild juvenile steelhead PIT-tagged at each watershed and outmigration year, which
corresponds with values of n in the model. ‘‘Detected’’ is the number of PIT tags from wild juvenile steelhead that were
subsequently detected at Año Nuevo Island (ANI), which correspond with values of k in the model.
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Finally, we specified independent prior distri-
butions for parameters. Because previous re-
search estimated detection probabilities for PIT
tags at ANI (Frechette et al. 2012), we used a
strongly informative independent beta prior
distribution for w, p(w) ; Beta(21.05, 11.65); this
is the methods-of-moments estimator for w
derived from the detection probabilities reported
in Frechette et al. (2012). For all other parameters
we used diffuse priors. The deposition parame-
ters of a and b exist on the real line, so we used
normal distributions with very large variances:
p(a) ; N(0, 100002), p(b) ; N(0, 100002). These
priors are effectively uniformly distributed. The
hierarchical parameters c and d must be positive,
so we used uniform priors for both sites: p(c) ;

Unif(0, 25), p(d) ; Unif(0, 25). Alternate priors

had negligible effects on the estimated posterior.
We estimated all parameters for the model

using standard Markov chain Monte Carlo
(MCMC) approaches in R (v. 2.15.0; R Develop-
ment Core Team 2012). MCMC sampling was
conducted with 1,020,000 draws; the first 20,000
iterations were removed as burn-in. We retained
every 200th posterior sample to provide 5,000
independent draws from the posterior distribu-
tion. We ran three replicate chains and confirmed
model convergence using Gelman-Rubin diag-
nostics (Gelman and Rubin 1992).

Model assumptions.—Estimated predation rates
are based on assumptions made during our
individual parameter estimates and our compar-
isons of tagged fish between watersheds. We
mention the major assumptions of the model
here and refer readers to the appendix for a
thorough justification of the model. The above
model assumes (1) the probability of detecting
tags is constant across all years; (2) transportation
probabilities are constant among years; (3)
experimental transportation rates are comparable
to transportation rates of consumed steelhead, (4)
PIT tags recovered at ANI were transported by
adult Western Gulls, and (5) PIT-tagged steel-
head are representative of the outmigrating
steelhead population. In most cases, our assump-
tions are necessary and will tend to slightly
under-estimate gull predation rates (see Discus-
sion and Appendix).

RESULTS

Steelhead tag recapture study
We recaptured PIT tags at ANI that were

originally inserted into wild juvenile steelhead.
In total, we PIT-tagged 16,701 wild juvenile
steelhead in the six study watersheds combined
and 218 of these were recaptured at ANI (Table
1). We observed a higher proportion of recap-
tured PIT tags from fish from watersheds with
increasing proximity to ANI (Fig. 4). For Waddell
Creek, the watershed in closest proximity to ANI,
the observed proportion of recaptured tags for all
years combined was 3.98%, whereas zero tags
were recovered from the furthest watershed from
ANI, Aptos Creek (Fig. 4). The proportion of
recaptured PIT tags at ANI represent the
proportion of all PIT tags from juvenile steelhead
that were recaptured at ANI from predation,

Table 2. Sample sizes for the 2010 transportation

experiment for each feed type (hotdogs and capelin).

All data are from spring morning (AM) feedings

unless otherwise indicated (i.e., PM, summer).

Watershed and feed type Tags fed Tags detected

Waddell (5.5)
Hotdog 253 14
Hotdog (summer) 78 6
Capelin 131 9
Capelin (summer) 124 14

Gazos (6.6)
Hotdog 209 1
Hotdog (PM) 159 1
Capelin 35 0
Capelin (PM) 22 0

Scott (12)
Hotdog 228 8
Capelin 21 3

San Lorenzo (33)
Hotdog 71 0

Soquel (38)
Hotdog 96 0

Aptos (41)
Hotdog 43 0

Totals 1470 56

Notes: Values in parentheses following the watershed
names are the linear distances (km) between the mouth of a
given watershed and Año Nuevo Island (ANI). ‘‘Tags fed’’
indicate the total number of PIT tags fed to adult Western
Gulls for a given feed type, season, and time of day. For a
given watershed, sample sizes for season and time of day
were combined (hotdog data only) and correspond with
values of m in the model. Capelin were excluded from the
model (see text for more details). ‘‘Tags detected’’ indicate the
number of PIT tags fed to adult Western Gulls that were
subsequently detected on Año Nuevo Island (ANI). For a
given watershed, sample sizes for season and time of day
were combined (hotdog data only) and correspond with
values of l in the model. Capelin were excluded from the
model (see text for more details).
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after accounting for tag loss from transportation,
and detection (Fig. 1).

Transportation (‘‘hotdog’’) experiment
From visual counts, we observed variation in

gull species composition and Western Gull age
class composition between sites. Of all gulls
counted at creek mouths (N ¼ 5,403), Western
Gulls were the most abundant species (85.4%),
with fewer (14.3%) California Gulls (Larus cal-
ifornicus) and a very small percentage of other
gull species (0. 3%) including Heermann’s Gulls
(Larus heermanni ) and Glaucous-winged Gulls
(Larus glaucescens). Adult Western Gulls were the
most abundant species and age class at the three

watersheds closest to ANI, whereas they ac-
counted for less than one-third to one-tenth of the
species composition at the three watersheds
furthest from ANI (Fig. 5).

The transportation (hotdog) experiment re-
vealed low but spatially variable probabilities of
transportation. The vast majority of PIT tags
deposited at ANI from the transportation exper-
iment were originally fed to adult Western Gulls
(95%), further supporting the hypothesis that
adult Western Gulls are the primary species and
age class responsible for PIT tag deposition at
ANI (see Appendix for more details). Of 1,470
PIT-tagged capelin and hotdogs fed to adult
Western Gulls during the transportation experi-

Fig. 4. The observed proportion of PIT tags detected at Año Nuevo Island (ANI) during the steelhead tagging

study (A) and the transportation experiment (B) for each watershed. The proportion recaptured (A) is based on

the proportion of PIT tags recaptured at Año Nuevo Island (ANI) relative to the number of tagged wild juvenile

steelhead at each site, where multiple years of recapture data are available for Waddell (N¼ 4 years) and Scott

Creeks (N¼ 7 years). The proportion of tags transported and detected (B) is based on the proportion of PIT tags

from PIT-tagged hotdogs and capelin detected at ANI relative to the number fed to adult Western Gulls at each

site during the transportation experiment.
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ment, 56 tags were subsequently detected at ANI
(Table 2). All of the detected tags were from one
of the three watersheds closest to ANI, whereas
no PIT tags were recovered at ANI from gulls
that were fed at the San Lorenzo River, Soquel
Creek, or Aptos Creek (Fig. 4). Thus, watersheds
in closer proximity to ANI had higher transpor-
tation probabilities.

Feed type, season, and time of day had
variable influence on the transportation rates of
PIT tags fed to gulls during the transportation
experiment. Although feed type did not result in
statistically significant differences in transporta-
tion rates (Waddell Creek, p¼ 0.208; Scott Creek,
p¼ 0.070), capelin were almost always transport-
ed at higher rates than hotdogs to ANI (Table 2,
Fig. 4). When compared to hotdogs, capelin
transportation rates were 1.5 times higher at
Waddell Creek and 4.1 times higher at Scott
Creek, which results in a weighted average
where capelin were transported 2.3 times the
rate of hotdogs. Therefore, in order to compare
transportation rates among all study watersheds,
we removed capelin and only used hotdog data

for subsequent analyses because they were the
only feed type used at all six study watersheds.
After removing capelin from the analysis, we
detected no significant differences in hotdog
transportation rates for season at Waddell Creek
(p ¼ 0.589). Gazos Creek had too few tag
recoveries to conduct statistical analyses on
whether time of day influenced hotdog transpor-
tation rates, however given similar sample sizes,
transportation rates were similar for morning (1/
209¼0.005) and evening feedings (1/159¼0.006).
Therefore we combined the data for both seasons
and time of feeding for all hotdog tags fed at each
watershed (N ¼ 1,137; Table 2) to inform the
transportation portion of the following model.

Estimating transportation and predation
We estimated the posterior probability distri-

butions for transportation rates as a component
of the Bayesian model. Due to the differences in
transportation rates between hotdogs and cape-
lin, we restricted the model to include hotdog
data only to provide among site comparisons.
Estimated transportation rates based on hotdog

Fig. 5. Mean number of birds present at each watershed during the transportation experiment, separated by

species and by age class (for Western Gull species only). Data were restricted to counts conducted during the

spring and morning surveys only to be comparable among sites. Abbreviations: CAGU, California Gull; WEGU,

Western Gull; Other, all other species combined.
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data were low and declined as a function of

distance from ANI. At the three watersheds

closest to ANI, the median probability that a

tagged hotdog consumed by an adult Western

Gull was transported to ANI each year was 0.073

(0.051–0.103, this and the following represent

90% CI), 0.063 (0.045–0.088), and 0.032 (0.023–

0.046) at Waddell Creek, Gazos Creek, and Scott

Creek, respectively (Fig. 6A). Median estimates

of transportation probability declined sharply at

the three watersheds furthest from ANI, where

less than 0.003 of all consumed tagged hotdogs

were predicted to be transported to the island. To

convert hotdog transportation rates into correct-

ed transportation rates more representative of

consumed steelhead, we incorporated a correc-

tion factor of 2.3 into the model, which multi-

plied hotdog transportation estimates by the

average relative difference from capelin trans-

portation rates. This is equivalent to replacing /i

in Eq. 4 with c/i and letting c ¼ 2.3. As a result,

the corrected transportation rates remain low, but

increased to 0.167, 0.146, 0.074 at Waddell Creek,

Gazos Creek, and Scott Creek, respectively,

whereas transportation rates were less than

0.005 at all other watersheds. We conducted

analyses using both the corrected and uncorrect-

ed transportation rates but present only the

Fig. 6. Site-specific parameter estimates for (A) posterior estimates of the probability of transportation (/) of a
consumed PIT tag to ANI (median 690% CI), before incorporating the capelin correction factor of 2.3 and (B)

posterior estimates of probability of predation (h) of a PIT-tagged steelhead, including sites with a single year of

data (white) and the across-year mean predation rate from the hierarchical model for sites with .3 years of data,

which includes Waddell Creek (grey) and Scott Creek (black). Beanplots show the full posterior distribution for

each quantity after incorporating the capelin correction factor of 2.3. Horizontal lines indicate median estimates.
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predation results using the corrected transporta-
tion rates below.

Low transportation rates translate into high
predation rates because tags detected at ANI
represented a relatively small proportion of the
total number of consumed tags. Overall, the
probability that a wild juvenile steelhead was
consumed as it passed the gauntlet of Western
Gulls at the watershed mouth was highest in
watersheds closest to ANI (median hierarchical
estimates for Waddell ¼ 0.464 [0.260–0.726 90%
CI] and Scott 0.306 [0.183–0.480]; non-hierarchi-
cal median for Gazos ¼ 0.387 [0.234–0.616]; Fig.
6B). Predation rates at the southernmost water-
sheds farther from ANI were highly uncertain
(Fig. 6B) due to the relatively few recaptures of
steelhead tags at ANI from these watersheds
(Table 1) and the lack of transported PIT tags
from the transportation experiment (Table 2).

For sites with multiple years of wild steelhead
recaptures at ANI, gull predation rates were
highly variable among years. Median predation
rates at Scott Creek ranged from 0.075 to 0.673,
over the seven years estimated (Fig. 7). At
Waddell Creek, median predation rates ranged
from 0.113 to 0.823 across the four years
estimated. Patterns of interannual variation were

similar between the two watersheds for the four
years that both watersheds were sampled (Fig.
7). Specifically, in both Waddell and Scott Creeks,
the median probability of predation was rela-
tively high in 2006 and 2010, average in 2009, and
relatively low at both creeks in 2008 (Fig. 7).
Comparisons of predation rates between water-
sheds were not possible for 2005, 2007, and 2011
because no steelhead were tagged in Waddell
Creek during those years.

DISCUSSION

We developed a robust quantitative frame-
work to better understand the impact of preda-
tion by an abundant generalist predator, adult
Western Gulls, on populations of threatened wild
juvenile steelhead in central California water-
sheds. Our results suggest predation rates at the
three watersheds closest to ANI are high (median
probability of predation �0.306) and variable,
ranging from 0.075 to 0.823 depending on the
watershed and year. Predation rate estimates
increase with proximity to the breeding colony
for the three sites closest to ANI and grow
increasingly uncertain at watersheds furthest
from ANI (�33 km), driven in part by spatial

Fig. 7. Posterior estimates for the probability of predation (h) of wild juvenile steelhead by adult Western Gulls

for individual years at two sites: Waddell Creek (grey) and Scott Creek (black). Points show median estimates,

thick vertical lines show interquartile range, and thin lines show 90% CI.
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patterns of transportation rates. Annual patterns
of predation varied similarly among years at the
two sites where time-series data were available.
With the approach and model developed in this
study we are able to generate overall Western
Gull predation rates on juvenile steelhead and
further understand the spatial and temporal
influence of a central-place forager on threatened
prey populations.

The predation rates estimated in this study
provide the first estimate of overall predation
rates of adult Western Gulls on juvenile wild
steelhead. Predation rate estimates are almost an
order of magnitude higher than minimum
predation rates from tag recoveries (Fig. 4A),
mark-recapture methods at ANI (Frechette et al.
2012), and avian predation estimates on salmo-
nids in other California watersheds (Evans et al.
2011, Adrean et al. 2012). Therefore, our study
reveals minimum estimates from tag recovery
may considerably underestimate predation rates
and suggests predation by avian predators is a
more significant source of mortality for juvenile
salmonids than previously recognized. In addi-
tion, PIT tags from critically endangered coho
salmon from Scott Creek have also been observed
on ANI (Frechette et al. 2012) and while
populations were too small to quantify gull
predation rates during this study, we expect gull
predation is a significant source of mortality for
coho populations as well. Furthermore, because
we estimate predation for a single colony of the
most common species and age class of avian
predator (adult Western Gulls), we have not
quantified overall predation by avian predators,
including those species and age classes that do
not breed or roost at ANI. Thus the total avian
predation is likely higher than the already
substantial rates reported here.

We observed that transportation rates are low
and declined with increased distance from the
Western Gull breeding colony (Fig. 4B), control-
ling the spatial scale of inference. Specifically, our
model estimated the median transportation
probability was highest at Waddell Creek, the
watershed in closest proximity to ANI, and
transportation probabilities declined rapidly for
the three locations furthest from ANI (Fig. 6A).
Because tags from distant sites are rarely
transported to ANI, our estimates of predation
grow increasingly uncertain as distance from

ANI increases, and we could not make strong
inference about predation rates at those sites (Fig.
6B). One possible explanation for the decline in
transportation rates with distance from ANI is
the increased time between predation and return
to ANI may result in higher rates of tag loss.
Alternatively, gulls that forage at watersheds
further from ANI may be more likely to be non-
breeders (Fig. 5) or may use breeding and
roosting locations other than ANI, which would
reduce transportation rates from these more
distant watersheds. Low transportation rates by
Western Gulls may also be influenced by species-
specific behavior while on the colony, including
how adults provision their chicks, where Western
Gulls feed chicks through regurgitation whereas
other avian predators (e.g., terns) may feed
whole fish to their chicks. Thus, different
predator foraging behaviors such as generalists
(i.e., gulls) verses piscivorous specialists (e.g.,
terns) may likely control the spatial scale of
inference for this type of tag-recapture study. Our
results thus provide the first example that low
transportation probabilities may dramatically
alter estimates of predation rates.

Estimated predation rates varied similarly
across years at Scott and Waddell Creeks (Fig.
7). In other systems, variation in predation rates
over time by visual predators has been attributed
to changes in regional environmental variables
such as stream flow (Antolos et al. 2005,
Hostetter et al. 2012), ontogenetic requirements
that trigger diet switching (Annett and Pierotti
1989), or change in the abundance of prey (Type
II or III functional response [Holling 1959],
Keefer et al. 2012). These factors may have
contributed to temporally coherent predation
rates at Scott and Waddell creeks. Furthermore,
annual variation in tagging effort at different
locations of the watershed (i.e., upper watershed
vs. lagoon) could be contributing to variation in
estimates of predation rates. The effect of tagging
effort on predation rates is supported by an
observed negative correlation between annual
predation rates and the number of steelhead
tagged in the upper watershed in Waddell Creek
(Pearson’s correlation, p¼ 0.028) and Scott Creek
(Pearson’s correlation, p ¼ 0.150). Therefore, we
hypothesize years with higher estimated preda-
tion rates were driven, in part, by the fact that a
larger proportion of steelhead were PIT-tagged in
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the lagoon. Lagoon-reared steelhead are more
susceptible to gull predation because they are
more likely to attain the size threshold needed to
survive the ocean phase of life and as a result are
more likely to out-migrate (Bond et al. 2008,
Hayes et al. 2011). High predation rates of wild
steelhead that utilize lagoon habitat are of
particular concern because lagoon-rearing indi-
viduals constitute over 87% of the returning
adult steelhead population (Bond et al. 2008) and
are therefore a critical component of the popula-
tion for recovery of local steelhead.

High predation rates such as those observed in
this study have significant implications for small
populations because the loss of a few individuals
can dramatically affect the probability of extir-
pation (Brook et al. 2008). At small population
sizes, rare and random events contribute to
driving population variability (Lande 1998). The
effect of stochastic predation on small prey
populations has been shown to decimate specific
cohorts; for instance predation events by moun-
tain lions (Felis concolor) resulted in significant
mortality of desert tortoises in 2003 and 2007
(Medica et al. 2012). In more severe cases,
stochastic predation may lead to the extirpation
of populations. For example, there is a greater
than 50% chance that unpredictable mountain
lion predation events may result in the extirpa-
tion of isolated bighorn sheep populations (Ovis
canadensis) (Festa-Bianchet et al. 2006) and a
greater than 23% chance that striped bass
(Morone saxatilis) predation will result in the
quasi-extinction of winter-run Chinook salmon
populations (Oncorhynchus tshawytscha) (Lindley
and Mohr 2003). Similar to these examples, we
documented high but variable predation rates by
gulls on juvenile salmonids. Although salmonid
predation is likely rare from the perspective of
the gulls, incidental and stochastic predation can
account for a large proportion of mortality for
small salmonid populations and may contribute
to salmon decline or potential extirpation.

The impact of predation is likely exacerbated
in this system by anthropogenic subsidies to a
generalist predator (Harrington et al. 1999,
Kristan and Boarman 2007, Esque et al. 2010).
Previous research on Western Gulls has shown
that landfills provide one of the most important
foraging habitats for most age classes of Western
Gulls (Spear 1988), and in other systems anthro-

pogenic subsidies have been identified as the
source of increased gull populations (Duhem et
al. 2008), gull reproductive success (Weiser and
Powell 2010), and juvenile and adult gull survival
(Mudge 1978, Mudge and Ferns 1982). On-going
research is investigating the linkages between
anthropogenic subsidies and Western Gulls to
better understand the role of subsidies in limiting
the recovery of imperiled salmonid populations
(A.-M. K. Osterback, unpublished data).

Small populations are particularly challenging
to manage and are also the most at risk of
extirpation. Effective management of small pop-
ulations requires quantification of mortality
sources, such as predation, that may contribute
to further population decline. Although directly
quantifying predation on small populations is
difficult, here we have demonstrated how man-
agers can estimate multiple sources of tag loss to
result in indirect, yet realistic, estimates of
predation rates. Our approach of combining a
Bayesian model with experimental and monitor-
ing data can be broadly applied to other systems
to estimate predation rates by central-place
foragers. Predation rates, such as those presented
in this study, are critical to inform an ecosystem
management approach for fisheries, which de-
pend on accurate estimates of the role of
predation and other trophic interactions in
fisheries population dynamics (Mangel and
Levin 2005, Naiman et al. 2012, Ward et al. 2012).
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SUPPLEMENTAL MATERIAL

APPENDIX

ASSUMPTIONS OF THE MODEL

This study likely provides the most robust
accounting to date of potential sources of
uncertainty to estimate avian predation rates on
salmon. Through propagating uncertainty of the
various processes, we generated realistic posteri-
or probability estimates of predation. Below we
present and discuss assumptions.

Detection probability
We held the probability of detection constant

across all years for the consumption model even
though detection probability was somewhat
variable among years. We investigated the
sensitivity of model results to changes in the tag
detection rate and found predation rates varied
minimally (,0.002 change in median probability
of predation) with fairly substantial changes
(60.23) to the published estimates for detection
probability (0.644 6 0.083 SE; reported by
Frechette et al. [2012]). The marginal effect of
detection probabilities on estimated predation
rates is primarily driven by low transportation
rates, such that increases in detection rate have
little impact on transportation rates, and subse-
quently have minimal effects on estimates of
predation. In the following two paragraphs, we
discuss how detection rates varied depending on
the year, however given the results of the model
sensitivity analysis such slight differences in
detection probabilities among years likely have
little to no effect on our estimated predation rates.

The model assumed scanning effort on Año
Nuevo Island (ANI) was constant among years.
Although standardized scanning effort resulted in
constant detection probabilities formost years (i.e.,
2006 through spring 2009; Frechette et al. 2012),
deviations from typical scanning effort in 2005,
2010, and 2011 likely affected the true detection
probabilities during those years. Detection proba-
bility was likely lower for PIT tags deposited in
2005 because tags may have been washed away or
buriedbefore the first full scanofANI inNovember
2006. In contrast, detection probability was higher
in 2010 and 2011when scanning effort increased to
ensure tag detections from the transportation

experiment. As a result, these variations in detec-
tion effort may result in slightly under-estimated
predation rates in 2005 (due to reduced scanning
effort) and over-estimated predation rates for 2010
and 2011 (due to increased scanning effort).

Because the transportation experiment was
conducted during a year with increased detection
probability (i.e., 2010), our transportation esti-
mates are inflated for years with less scanning
effort (2006 through spring 2009) which would
therefore under-estimate predation rates for those
years. As a result, the accurate median predation
rate may be higher than the estimated predation
rates for watersheds with recapture data only
prior to 2009 (Gazos Creek, Aptos Creek, and the
San Lorenzo River), and may be less variable than
the estimated predation rates for watersheds that
spanned all years of scanning effort (Waddell
Creek, Scott Creek, and Soquel Creek).

Transportation probability
We assumed transportation probabilities were

the same across years even though it is possible
that annual differences in foraging patterns may
differ among years, thereby influencing estimates
of predation. Since it is impossible to retrospec-
tively quantify transportation rates, we are
constrained by the reality of the system and
applied 2010 transportation rates to all years of
the study. This unaccounted for variation in
transportation probabilities among years may
also be reflected in the coherent annual variation
in predation rates between Scott and Waddell
Creeks. For example, if transportation rates varied
systematically across years, the assumption
would generate greater variation in the estimated
annual predation rates between both creeks.

Transportation estimates also assume PIT
tagged hotdogs or Icelandic capelin are con-
sumed, processed, and transported to ANI in a
way that represents eating a PIT tagged steel-
head. Results from the transportation experiment
demonstrate that capelin were consistently trans-
ported to ANI at a higher rate than hotdogs.
Although no paired experiment was possible to
compare capelin and steelhead transportation
rates due to the threatened status of steelhead, we
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assume the difference in transportation rates
between capelin and steelhead is minimal. This
is supported by a study of Herring Gulls that
reported minimal differences in mean gut reten-
tion time (,7% difference) when fed three
different species of fish prey (Hilton et al. 1998).
Therefore, it is likely that fish species such as
capelin and steelhead are processed similarly by
gulls in our system, and we therefore assume
capelin transportation rates are representative of
steelhead transportation rates. Because we did
not feed capelin at all six study watersheds, we
were constrained in using hotdog data only to
compare transportation rates among sites. We
then multiplied the hotdog transportation rates
by a capelin correction factor of 2.3 to result in
transportation rate estimates more comparable of
consumed steelhead. This multiplier increased
the transportation rates, and therefore resulted in
lower, and hence more conservative, estimated
probabilities of predation at all study watersheds.

In our model, we assume the majority of
steelhead PIT tags deposited on ANI were
transported by adult Western Gulls, which was
supported by the results of the transportation
experiment. Of the 2707 PIT tagged hotdogs and
Icelandic capelin fed to birds present at creek
mouths, an overwhelming majority of these were
consumed by Western Gulls, where 54.3%, 17.2%,
and 23.6% were consumed by adult, subadult,
and juvenile Western Gulls, respectively, and the
remaining 4.9% were consumed by California
Gulls and other avian species. Of these consumed
tags, 59 tags were subsequently detected on ANI,
mostly from adult Western Gulls (N¼ 56) and a
small number from subadult Western Gulls (N¼
3). However, two of the three tags eaten by
subadults were likely eaten by the same individ-
ual because both tags were fed at the same
location and day and were detected next to each
other on ANI. These results suggest PIT tag
transportation by other age classes of Western
Gulls or other avian species is rare, therefore
supporting our assumption that the majority of
deposited PIT tags are from adult Western Gulls.

Recapture probability: steelhead tagging
Our model assumptions include PIT tagged

steelhead are representative of all out-migrating
steelhead within each watershed. Although lethal
and non-lethal effects of PIT tagging are of

concern when applying results to a greater non-
tagged population, mortality of juvenile salmo-
nids from PIT tagging is considered to be low (less
than 2%) and retention of PIT tags is considered to
be high (95%; Sogard et al. 2009). Additionally,
over 27% of all PIT tagged steelhead in Scott
Creek steelhead were handled multiple times in
the creek between the initial PIT tag event and
their subsequent recapture on ANI, suggesting
tagging was not the source of mortality for these
individuals. Therefore, it seems unlikely that
tagging biases our estimates of predation rates.

The model estimates predation rates on the
tagged population of steelhead, and it is impor-
tant to note that the characteristics of the tagged
population vary by watershed. Specifically, tag-
ging location and time may have an effect on
survival before individuals are exposed to gull
predation, and therefore predation rates repre-
sent different subsets of the wild juvenile
steelhead population depending on when and
where fish were tagged for a given watershed.
For example, individuals tagged in the lagoon
are predominately age 0þ and age 1þ steelhead,
whereas individuals tagged in the creek main-
stem and upper watershed include the entire
range of age classes, some of which may never
attempt to out-migrate (Hayes et al. 2008). As a
result, a smaller proportion of juveniles PIT
tagged in the upper watershed may out-migrate
to the ocean where they are ultimately exposed to
gull predation. Therefore, predation rates may be
diluted at watersheds where some juveniles were
PIT tagged in the upper watershed (e.g., Wad-
dell, Scott, and Soquel Creeks) when compared
to watersheds where juveniles were tagged
exclusively in lagoon habitat (Gazos Creek, San
Lorenzo river, and Aptos Creek). Although
survival of juvenile steelhead is typically higher
in the upper watershed when compared to the
lagoon environment (Satterthwaite et al. 2012),
most out-migrating individuals eventually use
the lagoon habitat to rear before entering the
ocean (Hayes et al. 2011) and possibly experience
greater cumulative mortality. These potential
biases are difficult to correct for individual cases.
Regardless, these biases result in conservative
estimates of predation of out-migrating steelhead
at some sites and likely do not affect the overall
magnitude nor the negative relationship between
consumption rates and distance from ANI.
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