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Abstract. Food resources are often patchily distributed through space and time and are classified as
resource pulses when hyperabundant. Resource pulses can benefit growth, reproduction, and abundance
of various consumers. Yet, it is relatively unknown how such resources are partitioned among competing
consumers and how this is influenced by the magnitude of the pulse. Here, we examined how the magni-
tude of a pulsed resource influences resource partitioning among diverse sizes and species of consumers in
a natural setting over small spatial and temporal scales. We focused on salmon egg subsidies to stream fish
consumers. We experimentally added different quantities of pink salmon eggs to five meter long experi-
mental stream sections. Egg additions spanned three orders of magnitude from 6 to 3575 eggs. Stream fish
(egg consumers) were captured and gastric lavaged at each experimental section to determine how many
eggs each individual fish consumed. We modeled taxon-specific individual egg consumption as a function
of egg availability, individual mass, community composition, number of competitors, and stream velocity
using hurdle models in a Bayesian framework. We found that there were diminishing returns for increas-
ing egg abundance increasing egg consumption (i.e., type II functional response) for individual size classes
of fish, but that higher egg numbers were needed to benefit diverse consumers. Top models indicated that
egg availability and individual fish characteristics (size and taxon) drove egg consumption, while commu-
nity characteristics (species composition and number of competitors) were not supported. Our results sug-
gest that resource pulses can provide rare opportunities for less dominant sizes and species of fish to
consume abundant resources. The current paradigm in the stream fish literature suggests that stream fish
communities are structured by dominance hierarchies; however, dominance hierarchies may be less influ-
ential where pulsed resources comprise a large portion of the resource base.

Key words: coho salmon; competition; functional response; resource pulse; salmon subsidy; sculpins; steelhead trout;
stream fishes.

Received 5 May 2020; accepted 13 May 2020; final version received 12 June 2020. Corresponding Editor: Debra P. C.
Peters.

Copyright: © 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
+ E-mail : cjbailey@sfu.ca

INTRODUCTION

Consumers must cope with spatial and tempo-
ral variability in food resources (Weimerskirch
et al. 2005, Armstrong and Schindler 2011). In
extreme cases, resources come in pulses, defined
by Yang et al. (2008) as uncommon events in

ECOSPHERE % www.esajournals.org

which large quantities of a resource become avail-
able for a short period of time. Although infre-
quent, resource pulses can provide the majority of
the energy and nutrient intake for animal con-
sumers (Yang et al. 2008, 2010). For example, bank
voles may acquire ~74% of their annual food
intake from oak and hornbeam mast events (Selva
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et al. 2012) that may only last ~4 weeks (Pucek
et al. 1993). Resource pulses can also significantly
alter the reproductive output and abundance of
animal consumers (Yang et al. 2008, 2010); for
example, female damselfish with access to coral
propagules from a synchronized spawning event
may produce larvae with 25% larger yolk sacs
and 100% larger oil globules (McCormick 2003).
While there is growing appreciation for the
importance of resource pulses to consumers in a
variety of ecosystems (Yang et al. 2010), it is less
well understood how these resources are parti-
tioned among competing consumers (Yang et al.
2008). It is possible that the magnitude of the
resource pulse could temporarily alter competi-
tion; for instance, greater resource abundance
could allow inferior competitors to acquire some
portion of the resource pulse.

Salmon-bearing streams are a classic example
of ecosystems that can experience resource
pulses (Schindler et al. 2003, Moore et al. 2008,
Walsh et al. 2020). Salmon spawn and die in
streams annually, producing carcass tissues and
eggs that are consumed by a variety of predators
and scavengers (Naiman et al. 2002, Deacy et al.
2016) such as stream fishes (Lang et al. 2006, Bai-
ley et al. 2019). Energy acquired during the brief
salmon spawning period can dominate the
annual energy budget for stream fish consumers
(Scheuerell et al. 2007, Moore et al. 2008, Arm-
strong and Bond 2013); for example, through
bioenergetic simulations, Moore et al. (2008) pre-
dicted that resident rainbow trout (Oncorhynchus
mykiss) in their study would run an energetic def-
icit during the summer without salmon subsi-
dies. Increased spawning salmon abundance can
increase the growth (Rinella et al. 2012, Swain
et al. 2014) and abundance (Nelson and Reynolds
2014, Swain and Reynolds 2015) of stream fishes,
and alter their life histories (Bailey et al. 2018).
The availability of this important food resource
depends on stream fishes’ ability to consume dis-
lodged or unsuccessfully buried salmon eggs
(Collins et al. 2016). Salmon eggs are energeti-
cally and nutritionally superior to benthic inver-
tebrates (Cummins and Wuycheck 1971,
Schindler et al. 2003), they are highly visible, and
eggs do not have an escape response to preda-
tors. Indeed, when salmon eggs are at high abun-
dances, stream fishes may eat little else (Moore
et al. 2008, Armstrong et al. 2010). Salmon egg
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availability varies both seasonally and annually
—the positive nonlinear effect of spawner abun-
dance on available eggs, caused by nest superim-
position at high spawner abundances, can
magnify interannual variance in spawner abun-
dance (Moore et al. 2008). Thus, salmon egg
availability to stream consumers can be extre-
mely variable and this variation may have conse-
quences for egg consumption among competing
stream fish.

Among drift-feeding stream fishes, competi-
tion is generally considered to be hierarchical,
where larger individuals and certain species of
fish express dominance and exclude others from
territories or win direct contests for resources
(Glova 1986, David et al. 2007, Sato and Watan-
abe 2014, Naman et al. 2019). During periods of
regular (and low) resource availability, dominant
individuals consume greater amounts of
resources (Cutts et al. 1998, Taniguchi et al.
1998). However, although streams may be sub-
ject to long periods of low resource availability,
most resources may be delivered in brief pulses
such as synchronized aquatic insect emergences
(Wesner et al. 2019), terrestrial insect dispersal/
outbreaks (Tyus and Minckley 1988), and stream
fish spawning events (Armstrong and Bond
2013). The willingness to emigrate and territory
sizes of stream fishes generally decrease as food
availability increases, indicating that dominance
hierarchies are weaker when more food is pre-
sent (Slaney and Northcote 1974, Dill et al. 1981,
Keeley 2000, Imre et al. 2004). Thus, while domi-
nance hierarchies may structure drift-feeding
stream fish behavior and foraging success most
of the time, this paradigm may not be relevant
during resource pulses, which can provide the
bulk of the resources consumed by stream fishes.

Here, we performed an in situ field experiment
in short stream segments to examine the follow-
ing question: How does the magnitude of a
pulsed resource influence resource partitioning
among a diverse consumer community? Specifi-
cally, we experimentally created resource pulses
of different magnitudes by adding quantities of
salmon eggs spanning three orders of magnitude
and measuring the functional responses of
stream fish consumers that varied in size and
species—juvenile steelhead trout (O. mykiss),
coho salmon (Oncorhynchus kisutch), and sculpins
(Cottus spp.). We hypothesized that higher
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magnitude resource pulses would lead to
broader sizes and species of consumers acquiring
resources, and greater amounts of resources
acquired per individual consumer. Specifically,
we predicted that higher magnitude resource
pulses would reduce the strength of dominance
hierarchies, allowing smaller individuals and less
competitive species to access resources and con-
sume greater numbers of eggs.

MATERIALS AND METHODS

Study system

Pink salmon (Oncorhynchus gorbuscha) eggs
were added to experimental reaches in the Keogh
River (50°40'43.56" N, 127°20'55.23” W), British
Columbia, Canada. The Keogh River is a small
(31.2 km long with a watershed area of 130 km?;
Smith and Slaney 1980) coastal stream with low
nutrient concentrations (Johnston et al. 1990) that
drains into Johnstone Strait on the east coast of
Vancouver Island, just south of the town of Port
Hardy. Since 1972, salmonid monitoring has been
ongoing and several habitat restoration projects
have been completed at the Keogh River (Ward
and Wightman 1989, Smith and Ward 2000,
McCubbing and Ward 2002, Atlas et al. 2015, Bai-
ley et al. 2018). Stream fish species that may prey
on salmon eggs in the Keogh River include juve-
nile steelhead trout (O. mykiss), coho salmon (O.
kisutch), cutthroat trout (Oncorhynchus clarkii clar-
kii), Dolly Varden char (Salvelinus malma), and
sculpins Cottus spp. (C. asper and C. aleuticus).
Estimated pink salmon spawner abundance has
ranged from as few as ~75 to >800,000 fish over
the last 40 yr (Bailey et al. 2018, Fisheries and
Oceans Canada 2020), generating resource pulses
that span many orders of magnitude.

Field experiment

Water-hardened pink salmon eggs were exper-
imentally added to 5 m long sites in the Keogh
River over a three-week period from mid-August
to the end of the first week of September. Eggs
were sourced from mature female pink salmon
staging at the mouth of the Keogh River, and egg
treatments included six levels that ranged from 6
to 3575 eggs in logarithmic increments (6, 26, 72,
303, 865, 3575). Each egg treatment level was
replicated six times for a total of 36 experimental
units. These treatment levels were selected to
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approximate the range of eggs that stream fish
might realistically encounter in the Keogh River
from a year when extremely few pink salmon are
spawning, to the peak of the largest pink salmon
run ever recorded on the Keogh River (see
Appendix S1 for calculations).

Site locations were determined by randomly
selecting a habitat type (pool, riffle, or glide) and
walking upstream until that habitat type was
encountered (as characterized by Bain and
Stevenson 1999, Fausti et al. 2004). This random-
ization method ensured that habitat was not con-
founded with egg treatment. Sites were placed
within a 24-km stretch of river accessible to pink
salmon, spaced a minimum of 20 m apart and a
maximum of 11 km apart, and clustered around
access points along the river. Site setup began
with installing a seine net (1/4-inch mesh) across
the downstream boundary of a site and anchor-
ing it to the bottom by trapping the lead line with
rocks. The upstream boundary of the site was
then marked by a piece of rebar imbedded in the
sediment through the thalweg of the stream.
Next, a scent cue was installed at the upstream
boundary of a site to simulate pink salmon
spawning and to signal stream fishes that eggs
may become available for consumption. The cue
consisted of a weighted, sealed bag punched
with small holes, and filled with water that eggs
had soaked in for more than 24 h.

We left sites undisturbed for 15 min after add-
ing the scent cue to allow fish to settle after the
disturbance of setting up the net and rebar. Next,
eggs were released all at once, underwater, and
just above the substrate—akin to nest superim-
position where eggs are released in a pulse.
Thirty minutes after egg addition, three-pass
electrofishing was used to capture as many fish
from a site as possible. Captured fish were identi-
fied to species for salmonids or genus for scul-
pins, lightly anaesthetized, and then gastric
lavage was used to sample their stomach con-
tents. If a stomach sample contained salmon
eggs, egg fragments, or egg casings, the contents
were preserved in 95% ethanol for later enumera-
tion. We waited 30 min after egg addition before
electrofishing because we wanted to provide fish
with enough time to find and consume eggs
without allowing them to pass eggs into the
lower gut where they would be inaccessible to
gastric lavage. Based on our observations, eggs
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did not drift out of the experimental reach (a few
eggs were observed in the downstream net in
only one of 36 sites). Fork length and mass of fish
were measured after gastric lavage, at which
time fish were placed in a flow-through recovery
container in the stream before being released
back into the site they were captured from.

We used a net at the downstream boundary of
each site to ensure that the different experimental
reaches operated as independent units. If we had
allowed fish to move freely, we may have resam-
pled the same fish from a previous site down-
stream. In addition, the downstream net enabled
us to efficiently sample the fish community and
prevent fish that had consumed eggs from leaving
the experimental area during fish capture efforts.

We sampled a total of 36 sites and 1224 stream
fish. Between one and six sites were sampled per
day (depending on our supply of salmon eggs),
and all experimentation was completed over the
three weeks preceding when pink salmon typi-
cally arrive at the study reaches. Each site was
only sampled once to minimize the impacts of
electrofishing. Sites were sampled systematically
from downstream to upstream to ensure that
electrofishing never overlapped with the earliest
migrating pink salmon spawners. Thus, all sal-
mon eggs in the diets of the consumers were
from the experimental treatments.

Eggs from stomach samples were counted
back in the laboratory. When counting the num-
ber of eggs in a stomach sample, we only
counted an outer egg casing as an egg when we
found egg fragments in the stomach. When there
were multiple egg casings, we examined the egg
fragments in a stomach and approximated how
many whole eggs worth of fragments there were
and added that to the egg consumption count for
a fish. Egg fragments and casings were common
but not dominant. Using this method, we pro-
duced conservative estimates of egg consump-
tion by stream fishes.

Analysis

We analyzed functional responses in separate
models for each of the common predator taxa:
steelhead trout, coho salmon, and sculpins.
While cutthroat trout and Dolly Varden char
were captured and did consume eggs, they were
too rare to fit models for these species. We also
omitted individuals from our models that were

ECOSPHERE % www.esajournals.org

BAILEY AND MOORE

smaller than the smallest fish of each species
recorded consuming an egg under the assump-
tion that they were not capable of consuming
eggs (50 mm O. mykiss, 45 mm O. kisutch,
56 mm Cottus spp.). For each of the common
predator taxa, we tested a variety of potential
covariates in a series of candidate models that
were then competed to determine the top model.

Species-specific individual egg consumption
was modeled as a function of egg availability, indi-
vidual fish characteristics, and fish community
characteristics. Egg availability was measured as
the number of eggs released at a site. For individ-
ual fish characteristics, we used In(mass) and rela-
tive mass. We used the natural log of mass as a
proxy for absolute competitive ability (a proxy for
foraging efficiency and ability to win foraging con-
tests) as well as a proxy for the maximum number
of eggs an individual can consume (larger fish
have greater internal volume to store food). In con-
trast, relative mass (the mass of an individual
divided by the mass of the largest fish in a site,
regardless of species) was used as proxy for the
competitive ability of an individual relative to the
largest competitor at a site. For community charac-
teristics, we used site-level competitor abundance
and site-level fish community composition. Com-
petitor abundance indicates how many mouths an
individual must compete with for food (i.e., more
competitors are hypothesized to reduce the num-
ber of eggs consumed per individual) and was the
sum of all fish captured at a site minus one. Com-
munity composition was summarized using a
principle components analysis of site-level species
abundances (PCA; Appendix S2). We used the first
axis of the PCA which explained 94% of the varia-
tion in fish abundance by species at each site. We
included community composition because there is
evidence that even among closely related species
such as salmonids, there are species-specific differ-
ences in competitive dominance (Young 2004,
Thornton et al. 2017), and thus, sites with greater
proportions of more dominant or less dominant
species could reduce or increase individual egg
consumption, respectively.

We examined stream velocity as potential vari-
able. Stream velocity was measured by dropping
a cork into the stream at the position of the rebar
rod (that marked the upstream limit of a site)
and timing how long it took to drift the length of
a one-meter measuring stick. This measurement
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was repeated five times at each site and aver-
aged. This measurement occurred after fish sam-
pling took place to avoid disturbing the fish. We
used stream velocity rather than habitat type
because stream velocity is related to habitat type
and it was more likely that we would detect an
effect from a quantitative variable than using a
broad categorical variable. We hypothesized that
higher stream velocities would reduce the proba-
bility of egg consumption and number of eggs
consumed by fish.

We modeled egg consumption by stream
fishes using hurdle models in a Bayesian frame-
work with the BRMS package (BRMS translates
R code to STAN; Burkner 2017) in the statistical
software R (R Core Team 2016). Hurdle models
have two components; in this case, the first sub-
model determined the probability of an individ-
ual consuming at least one salmon egg (i.e., the
occurrence of any eggs in a fish’s stomach), and
the second sub-model focused on the number of
eggs in fish that consumed at least one egg. We
used hurdle models rather than traditional func-
tional responses because our data were zero-in-
flated, we hypothesized that different processes
may influence the two components of the model,
and only one response was measured for each
individual fish (necessitating a random effects
structure). We note that hurdle models can pro-
duce relationships between prey abundance and
consumption rates that correspond with type I,
11, or III functional responses.

The logistic component of the hurdle model
modeled the presence or absence of eggs in an
individual’s diet, which can be conceptualized as
the probability of a fish successfully accessing
any eggs. This logistic component of hurdle
models allowed us to test our hypothesis that
increased egg availability increases the probabil-
ity of egg consumption by less competitive
stream fishes. Thus, In(mass) and relative mass
were potential covariates and represented the
effect of body mass on competitive ability (forag-
ing efficiency and ability to win direct contests).

The count portion of the hurdle model mod-
eled the number of eggs consumed by fish that
consumed at least one egg. Count component
models were always offset by In(mass) to
account for size-limited food storage and relative
size was used as a potential covariate to repre-
sent the competitive mechanism of fish size.
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Using In(mass) as an offset allowed us to esti-
mate the variation in egg consumption that could
be attributed to competitive ability (via relative
mass) without being confounded by differences
in stomach volume.

We included some of our covariates in all mod-
els for biological realism. Egg abundance (treated
as a continuous variable) was included in all com-
ponent models because there cannot be egg con-
sumption without eggs. Site was set as a random
effect in all component models to account for dif-
ferences in habitat among sites and because egg
treatments were applied at the site level, but
responses were measured at the individual fish
level. Stream velocity, number of competitors, and
community composition were competed in some
but not all models. Interactions among some of
the covariates were tested (see Appendix S3 for
candidate model lists). We were particularly inter-
ested in whether egg abundance and body size
effects (In(mass) or relative mass) interacted. If
body size effects were positive at low egg abun-
dance but declined with increasing egg abun-
dance (in either the logistic or count component
model), this would indicate that dominance hier-
archies were strongly weakened by increasing
resource availability. However, even if body size
effects do not interact with egg availability, it is
still possible to observe evidence of reduced hier-
archical effects on egg consumption given that
hurdle models are a product of independent logis-
tic and count component models. We restricted
the number of covariates in sculpin count models
to two fixed effects due to low numbers of scul-
pins consuming eggs (n = 29).

In hurdle modeling, the combination of the
best logistic component model and the best count
component model combine to make the top hur-
dle model. Thus, candidate logistic generalized
linear mixed effects models were competed first
to determine the top logistic component model.
The top logistic model was then set as the logistic
component model in candidate hurdle models
with different hypothesized count component
models. To compare models, we used the post_-
prob() function in the BRMS package, which
computes posterior model probabilities from
marginal likelihoods to produce the relative
probability of each candidate model against
every other candidate model (probabilities of all
models sum to one).
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We followed modeling options recommended
for BRMS (which translates R code to Stan;
Burkner 2017) and Stan (Stan Development Team
2019). Our logistic component models used the
default logit link, while the count models were
zero-truncated negative binomial models with a
default log link. All covariates were standardized
(centered and divided by one standard devia-
tion; Schielzeth 2010) and assigned Gaussian pri-
ors with a mean of zero and standard deviation
of 10. These weakly informative priors make the
null assumption that none of the covariates have
an effect but includes a standard deviation that is
broad enough to detect effects of standardized
variables should they exist (Gelman 2019). Each
model was run using four chains with lengths of
3000 iterations where the first 1000 iterations
were discarded as burn-in. We evaluated model
convergence using the Gelman-Rubin diagnostic
test on each candidate model to determine
whether independent chains converged to a com-
mon posterior mode, with potential scale reduc-
tion factors (Rhat) <1.1 suggesting convergence.

Simulation model.—We simulated egg consump-
tion across the total sampled Keogh River fish
community to explore how egg resources are
partitioned across multiple sizes and species of
stream fishes. Using the top model posterior dis-
tribution for each fish taxon from the analysis
described above, we made predictions across
three levels of egg availability: 10, 100, and 1000
eggs. We used these egg quantities for ease of
interpretation and set a maximum of 1000 eggs
because predicted egg consumption changed lit-
tle above that abundance. We predicted the egg
consumption of every fish in our dataset 1000
times and calculated the average for each fish.
Individuals not included in the above statistical
analysis because they were too small to consume
eggs were included here and their consumption
was always set to zero. For sculpins, individual
relative size was calculated relative to the largest
fish in the entire dataset rather than the largest
fish at the site level (following the top model),
and thus, absolute mass is proportional to rela-
tive mass for sculpins in this simulation.

REsuULTS

Across all egg treatments and sites, we cap-
tured a total of 234 juvenile steelhead trout, 423
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juvenile coho salmon, 541 sculpins, 20 cutthroat
trout, and six Dolly Varden char. The proportion
of fish from each taxon that consumed at least
one egg was 0.56, 0.42, 0.06, 0.55, and 0.33,
respectively. Per gram of fish, steelhead trout,
coho salmon, sculpins, cutthroat trout, and Dolly
Varden char consumed 0.57, 0.33, 0.04, 0.35, and
0.12 eggs, respectively. Per site, there was an
average of 6.6 steelhead trout (range 0-20), 12.5
coho salmon (range 2-46), 50.9 sculpins (range
0-221), 0.5 cutthroat trout (range 0-3), and 0.2
Dolly Varden char (range 0-2).

Top models

For steelhead trout, coho salmon, and sculpins,
all top candidate logistic component models
included a measure of individual mass (relative
mass for sculpins and natural log of absolute
mass for the Salmonids), and egg abundance (in-
cluded in all candidate models; Appendix S3).
Similarly, the top count component model for
each taxon contained egg abundance (included
in all candidate models) and an offset of individ-
ual absolute mass (included in all candidate
models; Appendix S3). Top models never
included interaction terms and candidate models
including interactions never exceeded a relative
model probability of 5% (Tables 1, 2). Neither
species composition nor number of competitors
at the site level (community-level factors)
appeared in the top model for any taxon, and
candidate models that included these terms
never exceeded a relative model probability of
8% (Tables 1, 2). Similarly, candidate models that
included stream velocity never exceeded a rela-
tive model probability of 5% (Tables 1, 2).

Overall, fish size and egg abundance had con-
sistently large and positive effects on egg con-
sumption. As predicted, increased egg
availability increased the number of eggs con-
sumed across fish taxa (Tables 1, 2, Figs. 1, 2).
Egg availability had strong mean standardized
effects in the logistic component models (range
across taxa was 1.45-1.98; Table 3), supporting
our hypothesis that higher abundances of eggs
would enable more individuals, including those
less dominant, to access eggs. The mean effect of
egg abundance was also positive in the count
component models, albeit weaker and less cer-
tain (range across taxa 0.19-0.52; Table 3). Fish
size (individual mass or relative mass) had
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Table 1. Top logistic component models for steelhead trout, coho salmon, and sculpins.

Species and Relative model ~Cumulative
model rank Candidate logistic model probability probability
Steelhead trout
1 egg abundance + In(mass) + (1site) 0.76 0.76
2 egg abundance + relative mass + In(mass) + (1[site) 0.18 0.94
3 egg abundance + In(mass) + egg abundance:In(mass) + (1site) 0.02 0.96
4 egg abundance + relative mass + In(mass) + relative mass:In(mass) + (1site) 0.02 0.98
5 egg abundance + In(mass) + no. competitors + (1site) 0.02 1.00
Coho salmon
1 egg abundance + In(mass) + (1site) 0.83 0.83
2 egg abundance + relative mass + In(mass) + (1[site) 0.12 0.95
3 egg abundance + In(mass) + no. competitors + (1|site) 0.02 0.97
4 egg abundance + relative mass + In(mass) + relative mass:In(mass) + (1|site) 0.02 0.98
5 egg abundance + In(mass) + egg abundance:In(mass) + (1site) 0.01 1.00
Sculpins
1 egg abundance + relative mass + (1site) 0.37 0.37
2 egg abundance + (1site) 0.30 0.68
3 egg abundance + no. competitors + (1[site) 0.08 0.76
4 egg abundance + relative mass + no. competitors + (1site) 0.05 0.81
5 egg abundance + relative mass + egg abundance:relative mass + (1site) 0.05 0.86
6 egg abundance + stream velocity + (1[site) 0.05 0.91
7 egg abundance + In(mass) + (1[site) 0.04 0.94
8 egg abundance + (1 + egg abundance|site) 0.02 0.97
9 egg abundance + relative mass + In(mass) + (1[site) 0.01 0.98
10 egg abundance + In(mass) + no. competitors + (1site) 0.01 0.99
11 egg abundance + relative mass + no. competitors 0.01 1.00

+ egg abundance:relative mass + (1/site)

positive mean standardized effects across logistic
component models (range across taxa 1.25-2.53;
Table 3), supporting our hypothesis that larger
fish were competitively dominant over smaller
fish. As expected, the offset of the natural log of
individual mass explained much of the variation
in the number of eggs consumed in the count
component models (Fig. 1b, d, f) because this
variable controlled for differences in stomach
volume.

Steelhead trout—Larger steelhead trout pre-
sented with higher salmon egg abundances were
not only more likely to consume at least one egg,
but also generally consumed greater quantities of
eggs (Table 3, Fig. 1a, b). In the top hurdle
model, an average juvenile steelhead (4.4 g) was
predicted to eat 1.7 eggs on average (95% CI 1.3
2.2) at mean egg abundance (266 eggs added)
and 3.2 eggs (95% CI 2.4-4.0) at high egg abun-
dance (2224 eggs; mean + 1 SD; predictions are
for all steelhead regardless of whether they con-
sumed eggs). With respect to individual size, at
mean egg abundance (266 eggs added), a 4.4-g
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steelhead was predicted to consume 1.7 eggs
(95% CI 1.3-2.2), whereas an 11.1-g (mean + 1
SD) steelhead was predicted to consume 5.7 eggs
(95% CI1 4.1-7 4; Fig. 2a).

Coho salmon.—Larger coho salmon presented
with higher salmon egg abundances were also
more likely to consume at least one egg and con-
sumed greater quantities of eggs (Table 3,
Fig. 1c, d). In the top hurdle model, an average
juvenile coho (1.9 g) was predicted to eat 0.5
eggs on average (95% CI 0.1-1.1) at mean egg
abundance (250 eggs added) and 1.4 eggs (95%
CI 0.5-2.1) at high egg abundance (1633 eggs;
mean + 1 SD; predictions are for all coho regard-
less of whether they consumed eggs). With
respect to individual size, at mean egg abun-
dance (250 eggs added), a 1.9-g coho was pre-
dicted to consume 0.5 eggs (95% CI 0.1-1.1),
whereas a 3.0-g (mean + 1 SD) coho was pre-
dicted to consume 1.2 eggs (95% CI 0.4-2.0;
Fig. 2b).

Sculpins.—Larger sculpins relative to other
stream fishes at their site presented with higher
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Table 2. Top count component models for steelhead trout, coho salmon, and sculpins.

Relative model ~ Cumulative

Species and model rank Candidate count model probability probability
Steelhead trout

1 egg abundance + (1Jsite) + offset(In(mass)) 0.91 0.91

2 egg abundance + (1 + egg abundancelsite) + offset(In(mass)) 0.05 0.96

3 egg abundance + relative mass + (1[site) + offset(In(mass)) 0.02 0.98

4 egg abundance + no. competitors + (1site) + offset(In(mass)) 0.01 0.99

5 egg abundance + stream velocity + (1[site) + offset(In(mass)) 0.01 1.00
Coho salmon

1 egg abundance + (1/site) + offset(In(mass)) 0.86 0.86

2 egg abundance + relative mass + (1[site) + offset(In(mass)) 0.08 0.94

3 egg abundance + (1 + egg abundancelsite) + offset(In(mass)) 0.02 0.96

4 egg abundance + no. competitors + (1site) + offset(In(mass)) 0.02 0.98

5 egg abundance + relative mass + egg abundance:relative mass 0.01 0.99

+ (1site) + offset(In(mass))

6 egg abundance + stream velocity + (1[site) + offset(In(mass)) 0.01 1.00
Sculpins

1 egg abundance + (1Jsite) + offset(In(mass)) 0.75 0.77

2 egg abundance + relative mass + (1[site) + offset(In(mass)) 0.16 0.92

3 egg abundance + no. competitors + (1site) + offset(In(mass)) 0.06 0.98

4 egg abundance + stream velocity + (1[site) + offset(In(mass)) 0.02 1.00

salmon egg abundances were more likely to con-
sume at least one egg and consumed greater
quantities of eggs (Table 3, Fig. 1e, f). In the top
hurdle model, an average sculpin (5.8 g and 25%
of the mass of the largest fish in a site) was pre-
dicted to eat 0.1 eggs on average (95% CI 0.0-0.2)
at mean egg abundance (108 eggs) and 0.4 eggs
(95% CI 0.1-1.3) at high egg abundance (1110
eggs; mean + 1 SD; predictions are for all scul-
pins regardless of whether they consumed eggs).
With respect to relative size, at mean egg abun-
dance (108 eggs) a 5.8-g sculpin with 25% rela-
tive mass was predicted to consume 0.1 eggs
(95% CI 0.0-0.2), whereas an 11.3-g sculpin with
50% relative mass (mean + 1 SD) was predicted
to consume 0.2 eggs (95% CI 0.0-0.7; Fig. 2c).

Simulation model

Incorporating the results of our top model fits
into a simulation model revealed that across egg
abundances, simulated steelhead consumed the
most eggs (Fig. 3). At low egg abundance, 30%
of steelhead consumed eggs at an average of 0.73
eggs per individual, and at high egg abundance,
96% of steelhead consumed eggs at an average of
5.3 eggs per individual. However, as egg abun-
dance increased, coho and sculpins were increas-
ingly able to eat eggs (Fig. 3). At low egg
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abundance, only 2% of coho and 5% of sculpins
consumed eggs at an average of 0.03 and 0.05
eggs per individual, respectively. At high abun-
dance, 96% of coho consumed eggs averaging 1.8
eggs per individual, while 53% of sculpins con-
sumed eggs averaging 0.53 eggs per individual.
Relative to their size, coho consumed the most
eggs (0.45 eggs/g), followed by steelhead
(0.41 eggs/g) and then sculpins (0.12 eggs/g).
Across species, small fish (e.g., <4.0 g) that were
unlikely to access eggs at low egg abundance
(1.6% consumed eggs) could access eggs at
higher abundances (69.7% consumed eggs).
Thus, higher magnitude resource pulses bene-
fited a broader diversity of fish consumers.

DiscussioN

We discovered that resource abundance and
individual-level traits (species identity and body
size) had greater effects on resource consumption
by an assemblage of fish predators than commu-
nity-level characteristics. Specifically, egg abun-
dance, species identity, and individual size were
influential drivers of stream fishes foraging on
salmon eggs. In contrast to predictions based on
the typical paradigm that stream fish are consis-
tently structured by interspecific competition, we
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Fig. 1. Data and mean predictions with 95% credible intervals for the (a, ¢, e) logistic and (b, d, f) count compo-
nents of (a, b) steelhead trout, (c, d) coho salmon, and (e, f) sculpin hurdle models. Gray-shaded areas represent
the combined 95% credible intervals of the three lines shown in each plot. Yellow, cyan, and blue lines represent

mean — 1 SD In(mass), mean In(mass), and mean + 1 SD In(mass), respectively, for (a) steelhead trout and (b)

coho salmon. For (c) sculpins, yellow, cyan, and blue lines represent mean — 1 SD relative mass, mean relative
mass, and mean + 1 SD relative mass, respectively. Points are colored according to the mass or relative mass of
the individual fish, and represent (a, ¢, €) no eggs consumed or one or more eggs consumed, or (b, d, f) the num-
ber of eggs consumed if a fish consumed one or more eggs.

found that community composition and the
number of competitors had little apparent effect
on egg consumption, at least at the spatial and
temporal scale of this field experiment. Fish con-
sumers became saturated at high egg densities
following the shape of a type II functional
response curve. And while none of our top mod-
els included interactions between resource avail-
ability and metrics of body size, the product of
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the logistic and count component models sug-
gests that increased egg availability enabled sub-
ordinate fishes to consume more eggs.
Ultimately, high resource abundance resulted in
a greater number of sizes and species of stream
fishes consuming salmon eggs.

Extremely high densities of salmon eggs satu-
rated stream fish predators, with consumption
rates following the shape of a type II functional

September 2020 ** Volume 11(9) ** Article 03211



FRESHWATER ECOLOGY

Mean Eggs Consumed (per ind.)

Relative
7 Mass

....... 050
6 -

------- 0.25
31 e .
0 -

0 1000 2000 3000 4000

No. Eggs Added

Fig. 2. Hurdle model mean predictions and 95%
credible intervals of egg consumption by (a) steelhead
trout, (b) coho salmon, and (c) sculpins given 30 min
to consume eggs across a range of egg availabilities.
Yellow, cyan, and blue lines represent mean — 1 SD In
(mass), mean In(mass), and mean + 1 SD In(mass),
respectively, for (a) steelhead trout and (b) coho sal-
mon. For (c) sculpins, yellow, cyan, and blue lines rep-
resent mean — 1 SD relative mass, mean relative mass,
and mean + 1 SD relative mass, respectively.

response (Holling 1959). Not surprisingly, larger
fish consumed more eggs than their smaller
counterparts. Stream fish communities are typi-
cally structured by species-influenced dominance
hierarchies (Glova 1986, David et al. 2007,
Naman et al. 2019). Indeed, Bailey et al. (2019)
observed size- and species-specific patterns of
competitive interactions in video analysis from a
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subset of this study. Yet here we found that the
community composition per se did not influence
individual consumption rates. This lack of a sta-
tistical effect of community composition may be
due to the lack of manipulation of the fish com-
munity in this study, or relatively weak species
interactions. The different consumers had differ-
ent patterns of consumption as a function of egg
density, implying they had different competitive
abilities. Coho consumed more eggs relative to
their size than steelhead or sculpins (Fig. 3). This
aligns with earlier studies (Glova 1986, Young
2004) that showed that coho are dominant or
quasi-dominant over sympatric trout of equal
size. However, in this system, juvenile coho were
generally smaller than most steelhead trout. In
contrast, sculpins ate relatively fewer eggs than
the drift-feeding salmonids. Sculpins are benthic
predators that can consume salmon eggs directly
from salmon nests by moving through interstitial
spaces in the substrate (Foote and Brown 1998).
This mode of foraging likely reduces the rate of
interactions between sculpins and salmonids,
and is supported by Bailey et al. (2019) who
observed that sculpins rarely interacted with sal-
monids during egg experiments. Collectively,
these findings showcase the functional relation-
ships between the abundance of a pulsed
resource (salmon eggs) and their consumption
by a community of consumers (stream fishes).
Resource pulses of eggs allowed smaller, less
dominant fishes to access, and consume salmon
eggs. This aligns with the work of Sato and
Watanabe (2014), who found that only the largest
of their three subsidy treatments allowed sub-
dominant fish access to that subsidy. Here, we
have expanded on that result by showing that
this relationship is upheld in a multi-species sys-
tem across a much wider range of subsidization
and fish size variation. As we predicted, large
dominant salmonids were more likely to con-
sume eggs than smaller fishes at very low sal-
mon egg availability (Fig. 1), indicating that they
were more effective competitors. At higher egg
availabilities, hurdle model prediction slopes of
total eggs consumed by large and small fish
became approximately parallel (Fig 2), suggest-
ing that fish at the tops of their respective domi-
nance hierarchies were either satiated or unable
to monopolize the salmon eggs. Underwater
video analysis from a subset of this study found
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Table 3. Top logistic and count component model results for steelhead trout, coho salmon, and sculpins.

Model variable effectst
In(egg abundance) mass}

Taxon Component model ~ Mean  Lower 95% CI ~ Upper95% CI ~ Mean  Lower95%CI  Upper 95% CI
steelhead logistic 1.98 1.40 2.67 1.46 0.96 2.04
trout count 0.19 -0.07 0.48 N/A N/A N/A
coho logistic 1.45 0.91 2.11 1.25 0.89 1.62
salmon count 0.32 0.07 0.62 N/A N/A N/A
sculpins logistic 1.72 0.96 2.65 2.53 0.72 4.49

count 0.52 -1.30 1.69 N/A N/A N/A

+ Variable effect units are natural log odds for logistic models, and natural log of eggs consumed for count models given a

one standard deviation increase in the variable of interest.

1 For steelhead trout and coho salmon, mass is the natural logarithm of the absolute mass of an individual fish in grams; for
sculpins, mass is the mass of an individual sculpin divided by the mass of the largest fish at a given site.

that increasing egg availability reduced the fre-
quency of interference competition behaviors
among stream fishes (Bailey et al. 2019), suggest-
ing that dominance hierarchies were indeed
eroded by increasing egg availability. Overall,
while stream fish communities are generally con-
sidered to be highly size-structured competitive
hierarchies (Nakano 1995, David et al. 2007,
Naman et al. 2019), this paradigm may shift dur-
ing resource pulses. More generally, resource
pulses may be particularly important for species
and sizes of consumer that would normally be
competitively subordinate.

There are several caveats to this study that
should be discussed. First, we did not allow fish
to enter a treatment segment from further down-
stream. Fish consumers may track spawning sal-
mon to access the resource subsidy (Foote and
Brown 1998, Armstrong et al. 2013, Sergeant
et al. 2015); thus, we needed to use a stop net in
order to keep the experimental reaches indepen-
dent and facilitate fish capture. The second
caveat is that we did not examine egg consump-
tion over the days or weeks that salmon spawn-
ing runs usually last; our experiments ran for
30 min from the point of egg addition to the
beginning of fish extraction. Given more time to
forage, individuals may have found and con-
sumed more eggs, but more time would also
allow digestion to take place which could have
skewed our results. Thus, our study focused on
the immediate benefits to fish consumers (e.g.,
consumption rates), not seasonal (e.g., growth),
nor longer-term impacts (e.g., survival or life his-
tories). Third, we did not assess the mass of
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alternative food items, that is, fish and inverte-
brates. However, anecdotally we note that only
one large steelhead in our study had consumed
another fish, and all other fishes examined in our
study consumed only a few small invertebrates.
Therefore, it is unlikely that egg consumption
was significantly affected by alternative prey
sources in our study. Finally, we did not bury
eggs in the gravel like salmon do, which sculpins
may be uniquely able to access via interstitial
spaces (Foote and Brown 1998). Thus, our inter-
pretation of the functional responses of sculpins
to salmon eggs is focused on eggs released into
the water column, such as when eggs are uncov-
ered by nest superimposition. Overall, we sug-
gest that our study provides novel insights into
the short-term impacts of different levels of egg
subsidies to fish consumers and that scaling up
these findings remains a research frontier.

The diversity of fish consumers that benefit
from salmon subsidies will be influenced by
variability in salmon spawning abundance,
which in turn is influenced by environmental
variability as well as human management
actions such as harvest rates of fisheries. Thus,
our study adds to the growing body of research
that illuminates the potential trade-offs between
harvest and the ecosystem benefits that salmon
provide (Levi et al. 2012). Increasing the number
of eggs (a high quality, energy-dense food) a
stream fish consumes can increase resident fish
growth and survival (Bentley et al. 2012, Bailey
et al. 2018). Our results indicate that there were
diminishing returns for increasing egg abun-
dance increasing egg consumption (i.e., type II
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Fig. 3. Histograms of the average of 1000 times bootstrapped individual-level egg consumption predictions for
(a, b, c) steelhead trout, (d, e, f) coho salmon, and (g, h, i) sculpins under three different egg availability scenarios:
(a, d, g) 10 eggs, (b, e, h) 100 eggs, and (c, f, i) 1000 eggs. Predictions were made for every steelhead trout, coho sal-
mon, and sculpin in the dataset to represent the range of sizes observed. Individuals not included in the analysis
because they were too small to consume eggs are included here, but their response is always set to zero. For scul-
pins, individual relative size was calculated relative to the largest fish in the entire dataset rather than the largest
fish at the site level, and thus, absolute mass is proportional to relative mass for the purposes of this simulation.

functional response) for individual size classes
of fish, but that higher egg numbers were
needed to benefit diverse consumers. This aligns
with the synthesis of Walsh et al. (2020) who
showed that ecological relationships between
freshwater fish and salmon density tend to be
asymptotic, and reqzuire extremely high salmon
densities (7.3 kg/m°) to reach 90% of their
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asymptote. Moore et al. (2008) found that the
relationship between salmon spawning density
and the number of salmon eggs available for
consumption is positively exponential and
linked to nest superimposition by female sal-
mon. Thus, even modest increases in salmon
returns could have large impacts on egg con-
sumption by diverse stream fish consumers.
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Resource pulses have been hypothesized to
provide opportunities for consumers to maxi-
mize their energy acquisition (Yang et al. 2008,
Armstrong and Schindler 2011). Such resource
pulses often take the form of subsidies, where
prey resources cross ecosystem boundaries and
thus can reach disproportionately high abun-
dances. Past studies have experimentally manip-
ulated resource subsidies to stream fishes to
show that subsidies can drive a many-fold
increase in the growth rate of consumers (Wipfli
et al. 2003, Uno and Power 2015, Collins et al.
2016) and reduce hierarchical effects among two
size classes within a consumer species (Sato and
Watanabe 2014, Naman et al. 2019). Subsidies
can also temporarily alter trophic cascades (Sato
and Watanabe 2014, Collins et al. 2016), although
this may depend on the timing of subsidies (Sato
et al. 2016), and generate apparent competition
over longer time scales (Marcarelli et al. 2020).
Here, we provide rare, in situ empirical evidence
of pulse-level resources increasing the diversity
of sizes and species of consumers that benefit
from a single subsidy. Collectively, our results
combined with the studies mentioned above sug-
gest that resource subsidies may promote the
persistence of subdominant individuals and spe-
cies, potentially facilitating a diversity of species
and size structures. However, human activities
can decrease the magnitude of these resource
pulses and results from our study suggest that
this loss will decrease the diversity of the bene-
factors. For example, many resource pulses are
driven by migratory animals (Bauer and Hoye
2014), such as salmon in our study system, yet
migratory animal populations are rapidly dimin-
ishing (Wilcove and Wikelski 2008). We suggest
that decreases in the magnitude of resource
pulses will not only decrease resources to indi-
vidual consumers, but also reduce the number of
species and sizes of consumers that can benefit.
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