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Abstract

Spatial structure in landscapes impacts population stability. Two linked components of stability
have large consequences for persistence: first, statistical stability as the lack of temporal fluctua-
tions; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation res-
cue effects. Here, we determine the influence of river network structure on the stability of riverine
metapopulations. We introduce an approach that converts river networks to metapopulation net-
works, and analytically show how fluctuation magnitude is influenced by interaction structure. We
show that river metapopulation complexity (in terms of branching prevalence) has nonlinear
dampening effects on population fluctuations, and can also buffer against synchronisation. We
conclude by showing that river transects generally increase synchronisation, while the spatial scale
of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual
stability – conferred by fluctuation and synchronisation dampening – emerges from interaction
structure in rivers, and this may strongly influence the persistence of river metapopulations.
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INTRODUCTION

Stability is a concept central to ecology, but is subject to
multiple interpretations and meanings (May 1973; Doak et al.
1998; Ives & Carpenter 2007). In empirical studies of popula-
tion dynamics, stability is often used to describe how
population sizes fluctuate over time. This can be measured
with statistical approaches such as the coefficient of variation
of a population trajectory (Doak et al. 1998; Moore et al.
2010; Schindler et al. 2010), or the spectral properties of time
series (Rogers et al. 2013). Here and hereafter, we collectively
refer to these conceptual approaches as measures of statistical
stability. In contrast, theoretical studies generally employ a
dynamic-systems definition of stability, which concerns
whether a population trajectory is robust to perturbations
(May 1973). This can be assessed by measuring the rate and
direction of population trajectories after a pulse or press per-
turbation (Ives & Carpenter 2007) or by determining the gen-
eral conditions promoting or preventing dynamic stability
(Gross & Feudel 2004; Yeakel et al. 2011; Allesina & Tang
2012). Possible trajectories range from simple fixed points,
where the population size remains constant over time, to limit
cycles describing periodic oscillations, or chaotic attractors dis-
playing complex oscillatory behaviours. We collectively refer to
these dynamic-systems concepts as measures of asymptotic sta-
bility. Although we reference these conceptual frameworks sep-
arately, many seemingly disconnected definitions of stability
are strongly correlated (Donohue et al. 2013).
Both statistical and asymptotic measures of stability are

expected to be in general agreement in predicting population

persistence. For example, a population that is both statisti-
cally stable (lower magnitude of fluctuations), as well as
asymptotically stable (such that a population trajectory
relaxes around a steady state after a perturbation) is expected
to have a greater probability of persistence over time (Mangel
2006). However, in the case of non-steady-state conditions,
like limit cycles or chaotic attractors, the two conceptual
frameworks of stability may diverge. For example, a popula-
tion trajectory that relaxes to a limit cycle with a large ampli-
tude is asymptotically stable, but statistically unstable.
Moreover, when multiple populations interact as a metapopu-
lation, synchronisation of population trajectories can result
from the convergence of populations to a coherent state (Earn
et al. 2000). Metapopulation synchronisation is of particular
interest because increased synchrony reduces the potential for
neighbouring populations to rescue those nearing extinction,
decreasing the probability of persistence (Heino et al. 1997;
Holland & Hastings 2008; Moore et al. 2010).
Persistence is determined in part by the patterns of interac-

tions among species within a community, or populations within
a metapopulation, and different interaction structures impact
persistence (Earn et al. 2000; Stouffer & Bascompte 2011). The
importance of structure has long been recognised for food webs
(Pascual & Dunne 2006), and often has large effects on the
dynamics of systems with strong spatial constraints (Earn et al.
2000; Cuddington & Yodzis 2002; Fortuna et al. 2008). For
example, Hanski et al. (1994) showed that the structure of
interactions in butterfly populations has large consequences on
the extinction and colonisation rates of different habitat
patches. However, to what extent interaction structures
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contribute to the statistical or asymptotic stability of metapop-
ulations is not well understood, and this is anticipated to be
particularly important for populations constrained to river
watersheds (Er€os et al. 2012; Peterson et al. 2013).
Interactions in rivers are spatially constrained, limited by the

geological forces that determine river network structure (Rodri-
guez-Iturbe et al. 1994; Rodriguez-Iturbe & Rinaldo 1997; De-
vauchelle et al. 2012), and these constraints alter population
and community dynamics (Brown et al. 2011). For example,
river network structure influences fragmentation dynamics and
by extension the extinction risk of aquatic populations (Fagan
2002; Grant 2011), and impacts community diversity (Mune-
epeerakul et al. 2008; Lynch et al. 2011; Carrara et al. 2012).
The structure of river metapopulations is unique compared to
terrestrial systems: interactions between river populations are
often asymmetrically influenced by those upstream due to direc-
tional water flow, while dendritic river structure limits transect-
ing interactions across river branches (Grant et al. 2007; Er€os
et al. 2012). These watershed properties may strongly influence
the statistical or asymptotic stability of river metapopulations.
Whether and to what extent the structure of river metapopula-
tion networks promotes or inhibits both synchrony and the
magnitude of population fluctuations is thus of key importance
for predicting extinction risks of river populations.
Here, we determine the influence of river network structure

on metapopulation stability. We first introduce a method by
which complex river systems are quantified as interaction net-
works. We then determine analytically to what extent popula-
tion-level fluctuations may be expected to vary with the
statistical properties of such networks. Dynamic processes of
a metapopulation can be described by a series of coupled
differential equations, and we show how the specialised
structure of river metapopulations affects synchronisation.
Our results suggest that the complexity of river metapopula-
tion networks – in terms of the prevalence of branching sub-
populations – has large, nonlinear dampening effects on
fluctuations due to the integration of asynchronous popula-
tion trajectories. Moreover, we show that increased branching
complexity is expected to buffer against synchronisation com-
pared to same-sized terrestrial metapopulations. We then
explore whether deviations in metapopulation structure – in
the form of river transects – impact synchronisation. Finally,
the formalisation of spatial interaction networks is strongly
dependent on spatial scaling, which is expected to vary across
organisms (Er€os et al. 2012; Gr€unbaum 2012). We show that
our predictions of synchronisation in river networks change as
a function of spatial scaling, and we conclude by discussing
the potential impact that different spatial scales have on river
metapopulation dynamics.

MATERIAL AND METHODS

River metapopulation network structure

River metapopulations can be depicted as branching networks
(Grant et al. 2007; Grant 2011), where the root node corre-
sponds to the confluence C, and the terminal upstream nodes
represent tributaries T . In this case, nodes represent popula-
tions inhabiting sections of an idealised river discretised by a

scale length ℓs, including either non-branching or branching
river sections (Fig. 1). Thus, links provide structural informa-
tion governing the connectance of nodes, and population pro-
cesses occur exclusively within nodes, which is conceptually
similar to the network description of food webs, where
dynamics are constrained to species (nodes), but directed by
species interactions (links). Because nodes represent river seg-
ments, they can include more than one branch (similar to the
on-network statistical approach explored by Peterson et al.
2013), are not restricted to a simple bifurcation scheme where
each node is linked to two upriver nodes, and thus share
structural similarities with Bethe lattices (Bethe 1935). By
incorporating the discretisation of space as a function of the
scale length ℓs, we enable detailed analysis of population
dynamics as a function of the organismal integration window.
The organismal integration window is the spatial scale bound-
ing local population dynamics, and is strongly dependent on
the organism of interest, and may have a large influence on
metapopulation dynamics (cf. Heino et al. 1997). Because we
are quantifying the spatial network of population connections,
our river network abstraction includes all linkages and is not
restricted to linkages of equal size similar to that described by
the Horton-Strahler stream order system.
We define three statistical properties of river metapopulation

networks: (1) the maximal network order – or radius – of the
river Ω, which is the river distance (in numbers of nodes) from
the tributary T to the confluence C, where the confluence has a
value of 1. We use the lowercase x to identify the network
‘order of observation’ (equivalent to shells in Bethe lattices),
which identifies how far from the confluence an observation is
made. Accordingly, an observation at a tributary node is given
by x = Ω, while an observation at the confluence is x = 1; (2)
the probability that a node includes a branching (p) or a non-
branching river section (1 � p); (3) the number of river
branches per river section j, where j ≥ 2 (see Table 1).
Thus, the expected number of nodes for a river metapopula-

tion with radius Ω is

EfNg ¼
XX
x¼1

½p� jþ ð1� pÞ � 1�x�1; ð1Þ

which can be expressed as

EfNg ¼
ðpj� pþ 1ÞX � 1

pj� p for 0 \ p� 1

X for p = 0.

8><
>: ð2Þ

Additional complexity can be introduced by treating the
branch number j as a random variable K, such that the prob-
ability that K = j varies according to a truncated Poisson dis-
tribution where we consider branches ≥ 2 with a mean value
of k, and

EfNgRV¼
WX�1
W�1

; whereW¼ pkð1�e�kÞ
1�Q

�pþ1 for 0\p\1;

X forp=0,

8><
>:

ð3Þ
where the expected value and variance of the number of
branches is E{K} = Var{K} = k (see Appendix S1 for the
derivation). The function Q is the regularised incomplete
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gamma function, simplified as e�k(1 + k), and normalises the
probability distribution between 2 and ∞.

Statistical stability in river metapopulation networks

The interactions of aquatic populations in a river system are
constrained by river network structure. These spatial
constraints direct how changes in a population on node
i – defined by the trajectory /i(t) – impacts connected popula-
tions, and may also influence the trajectory of the metapopu-
lation, Φ(t) (where Φ¼

SN
i¼1 /i). To determine the effect of

river structure on the magnitude of fluctuating populations,
we use the analytical description for the coefficient of varia-
tion (CV = r/l; where l is the mean size of a population and
r is its standard deviation) for an assembly of populations
with equal mean abundances and standard deviations, such
that /i(t) are statistically similar for all i (Doak et al. 1998).
As the number of populations in an aggregate increases, the
CV for the aggregate decreases if the variance (r2) scales to
the square of the mean and populations are not perfectly cor-
related, such that the relative sizes of fluctuations of the
aggregate decrease via statistical averaging (Doak et al. 1998),
also referred to as the portfolio effect.
Upstream populations in rivers are expected to have

asymmetric influence on those downstream. As an extreme

(a)

(c)(b) p = 0.1 p = 0.2

p = 0.5

p = 0.8 p = 1

ω = Ω = 5

ω  = 1

Figure 1. (a) A general framework for constructing river metapopulation networks from a watershed as a function of the scale length ℓs, where the

tributaries and confluence are identified by T and C respectively. (b) Examples of river metapopulations with a branch number j = 3 and with different

branching probabilities p. (c) Examples of river metapopulations where p = 1, and where j takes a single value or serves as a random variable. River

metapopulation networks are visualised as converging on the centre of a circle; this radial visualisation simply helps display river complexity.

Table 1. Model parameters and variables used to describe and predict the

statistical and asymptotic stability of river metapopulation networks

Parameter Interpretation

Possible values or

definition

p Probability of branching 0 ≤ p ≤ 1

j Branch number ≥2
x Order of observation 0 < x ≤ Ω
Ω Network radius >1
N Number of nodes ≥1
ℓs Scale length >0
CV Coefficient of variation ≥0
n Number of subpopulations ≥1
r Correlation coefficient �(n�1)�1 ≤ r ≤ 1

l Mean subpopulation size ≥0
r SD of subpopulation size ≥0
Ψ Expected number of inflowing nodes >1
Φ(t) Metapopulation trajectory Φ¼

SN
i¼1 /i

/i(t) Population trajectory at node i

F Internal dynamics function

H Interaction dynamics function

q Interaction strength

A Network adjacency matrix A(i linked to j)=1; 0 o.w.

D Network degree diagonal matrix Di=j > 0; 0 o.w.

L Laplacian matrix L=D�A

Λi Laplacian eigenvalues ≥0
et Transect sensitivity ≥0
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example we consider downstream population dynamics to
be a function of merging upstream dynamics. In river meta-
population networks with high branching probabilities
(p ≫ 0), the number of upstream nodes increases nonlinearly
with observations from the tributary to the confluence
(decreasing order of observation, x). The confluence popu-
lation is thus impacted by all upstream populations, whereas
tributary populations are independent. Doak et al. (1998)
showed that the coefficient of variation for a community
aggregate (CVa) composed of n subpopulations with equiva-
lent CVs (CVp), and correlated as r (where r is the Pearson
correlation coefficient, and all populations are correlated
equally), is

CVa ¼ CVp
1þ rðn� 1Þ

n

� �1=2
: ð4Þ

With observations from the tributary to the confluence of a
river network, the number of upstream populations contribut-
ing to the downstream aggregate increases nonlinearly. We
can determine the CVa for interacting river populations in
the form of eqn (4) as a function of the properties that
describe the structure of the network. Populations at the
tributary nodes T thus have a coefficient of variation
CVa(x = Ω) = CVΩ. Combining eqns (3) and (4) recursively
throughout the metapopulation network (see Appendix S2)
gives the expected CV for the population aggregate at the
order of observation x, such that

CVaðxÞ ¼ CVX
1þ rðW� 1Þ

W

� �X�x=2

; ð5Þ

where the branch number is treated as a random variable with
a mean value k, and Ψ is thus interpreted as the expected
number of inflowing populations to the node at the order of
observation.
Dynamic and stochastic effects that promote synchronous

population dynamics will result in greater correlation among
subpopulations /i(t), such that r?1 in a perfectly synchronised
system. If populations are assumed to react similarly to exter-
nal forces (e.g. predation, resource limitation), it stands to rea-
son that their correlation coefficients are similar. Here, we
assume that r is the same for all populations, in comparison to
ecological communities, where species may be expected to con-
tribute differently to synchrony (Thibaut & Connolly 2013).

Asymptotic stability: synchronisation in river metapopulation

networks

Network structure can influence whether the synchronisation
of its interconnected components is possible (Earn et al. 2000;
Barahona & Pecora 2002; Barrat et al. 2008). Synchronisation
can be defined in terms of population-level correlations, or in
terms of asymptotic stability. In the latter case, synchronisa-
tion is defined as the convergence of all population trajectories
to a trajectory s(t) (complete synchronisation: where /i(t) = s(t)
for all i; Barrat et al. 2008). The synchronous trajectory s(t) is
thus considered dynamically stable if trajectories under a
small perturbation return to s(t). Here, we consider under
what conditions the dendritic structure of river networks can

diminish or amplify the potential for complete synchronisa-
tion of a metapopulation.
The mathematical description of metapopulation network

structure is summarised by the adjacency matrix A, which is
an N 9 N matrix (where N is the number of nodes in the net-
work). The elements of the matrix Ai 6¼j = 1, if a link exists
between node i and node j, and 0 otherwise. If each node rep-
resents a discrete river segment, we can assume that each node
has both internal dynamics (driven by processes that occur in
a given node i) and external dynamics (driven by nodes that
are connected to node i). We describe the internal dynamics
of node i as

d

dt
/i ¼ Fð/iÞ for i ¼ 1; . . .;N;

where the function F(/i) describes the internal population-
level processes that determine the temporal change of a popu-
lation / inhabiting node i within the metapopulation Φ.
Because d/i/dt should depend on internal and external effects,
we must include the influence of node i’s neighbours and the
interaction strength q, such that

d

dt
/i ¼ Fð/iÞ þ q

XN
j¼1

LijHð/jÞ for i ¼ 1; . . .;N; ð6Þ

where the function H(/j) describes the interaction between /i

and /j, and Lij is an element of the Laplacian matrix L, which
introduces the structure of the metapopulation. Here, we
assume that the strength of interactions between nodes is
equivalent across the metapopulation Φ. Unlike our analysis
of statistical stability, we assume that interactions are symmet-
ric such that upstream and downstream populations are trea-
ted equally. This simplification stipulates that neighbouring
upstream and downstream populations have similar influence,
such that movement between nearest-neighbouring habitats is
not affected by water flow.
The Laplacian matrix is L = D�A where D is the diagonal

matrix with each on-diagonal element representing the degree
of the nodes in the network (and 0 otherwise). Thus, the ele-
ments of the Laplacian matrix Li 6¼j = �1 if a link exists
between node i and node j, while Li=j is the degree of node
i. All matrices can be described by a spectrum of eigenvalues
(Λ; the number of eigenvalues is equal to the number of
nodes N), and that of the Laplacian matrix can be used to
determine whether a network is prone to synchronous
dynamics, even when the functions that describe the internal
and external dynamics of the system are unknown (Barahona
& Pecora 2002; Motter et al. 2005; Barrat et al. 2008).
Written sequentially, we identify the eigenvalues as
0 = Λ1 ≤ Λ2 ≤ … ≤ Λmax.
The eigenratio Λmax/Λ2 measures the potential that dynam-

ics on a network converge to the stable synchronised trajec-
tory s(t) (Barahona & Pecora 2002; Motter et al. 2005; Barrat
et al. 2008). To show this, if a small deviation ξ is introduced
to the proposed synchronous trajectory of the dynamic system
(eqn 6), such that /i(t) = s(t) + ξi, the trajectory is stable if
the deviation decays over time and unstable if it does not.
The change in ξi over time is decoupled along the eigenvectors
of the Laplacian, fi, as the eigenvectors represent linear com-
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binations of the perturbation ξ. By Taylor expansion,
fiðtÞ ¼ f0i expf½F 0ðsÞ þ qKiH

0ðsÞ�tg, where f0i is the initial per-
turbation, and F 0(s) and H 0(s) are the derivatives of the func-
tions describing internal and external dynamics with respect
to s (Barahona & Pecora 2002; Motter et al. 2005; Barrat
et al. 2008).
The trajectory s(t) is stable if, across the trajectory and for

each Laplacian eigenvalue, the exponential term
F 0(s) + qΛiH

0(s) is negative, such that the deviance ξi decays
over time. Thus, we identify the master stability function

CðqKiÞ ¼ max
s

½F 0ðsÞ þ qKiH
0ðsÞ�: ð7Þ

If Γ > 0, the deviation is magnified over time, and the syn-
chronous trajectory is unstable, while if Γ < 0 the deviation
decays to the stable synchronous trajectory (Motter et al.
2005). The conditions that result in synchrony can be defined
if the region where Γ < 0 is identified. We define the bound-
aries of this stable region as a1 and a2 such that Γ(qΛi) < 0 if
a1 < qΛi < a2. The identities of a1 and a2 are thus deter-
mined by the functions F and H, while the maximum and
minimum extent of these bounds are found by substituting Λ2

(the lowest non-zero Laplacian eigenvalue) and Λmax (the
highest Laplacian eigenvalue) for Λi. The condition under
which synchrony occurs is thus given by

Kmax

K2
\

a2
a1

: ð8Þ

This is an oft-used relationship in spectral theory (Barahona
& Pecora 2002; Motter et al. 2005; Barrat et al. 2008), and is
remarkable because the structural determinants of the system
(the Laplacian eigenvalues) are separated from the dynamical
determinants of the system (a1 and a2). Synchrony is thus
more likely to occur if the eigenratio is relatively small even if
a1 and a2 are unknown, and this can be determined directly
from metapopulation structure. In fact, the spectral properties
of tree-like networks have been investigated (Fan et al. 2008)
– particularly in systems with a star structure (and therefore
no branches beyond the confluence node). Although star
structured networks have been shown to have the largest dif-
ference between Λmax and Λ2, it is unknown to what extent
branching influences the potential for synchronisation in the
context of river metapopulation networks.
To examine under what conditions river metapopulations

are more or less likely to synchronise, we compared the eigen-
ratio of river metapopulation networks to those of corre-
sponding random metapopulation networks. Random
metapopulations are generally representative of those occupy-
ing terrestrial habitats, as multiple interaction pathways can
exist between populations, although we acknowledge that ter-
restrial metapopulations have unique spatial constraints that
we do not explore (e.g. see Hanski et al. 1994). For an ensem-
ble of constructed river metapopulation networks, each river
metapopulation is paired with a corresponding random meta-
population that has (1) the same number of nodes, (2) 29 the
number of links (a random network with the same number of
links as a river metapopulation is always constrained to a
tree-like branching structure) and (3) a single component,
such that the metapopulation is not disconnected. Accord-

ingly, as a river metapopulation becomes more branched, the
number of nodes and links in the random metapopulation
grow in proportion to its riverine counterpart.
To determine whether and to what extent the strict branch-

ing structure of river metapopulation networks influences syn-
chronisation, we introduced transecting links between
otherwise separated nodes. Transects are links that connect
populations in different branches, effectively short-circuiting
the dendritic structure of river network metapopulations. To
determine the effect of transects on the dynamic synchronisa-
tion of river metapopulation networks, we define the transect
sensitivity metric, et, as the eigenratio of a transected river
metapopulation divided by the eigenratio of a metapopulation
with equivalent structure but without transecting links. If
et < 1 the transected metapopulation is more likely to syn-
chronise while if et > 1 the transected metapopulation is less
likely to synchronise. This analysis thus quantifies the impor-
tance of branching structures on synchronisation dampening
and also lends insight into how anthropogenic alterations of
river metapopulation structure can change the expected
dynamics.

RESULTS

Statistical stability

As the complexity of river metapopulation networks increases
(in terms of the prevalence of branching nodes), the statisti-
cal stability of downstream populations increases nonlinearly.
For nodes at an order of observation x < Ω, the number of
populations in the aggregate increases, leading to lower val-
ues of CVa in accordance with Doak et al. (1998). However,
the magnitude of this decrease is strongly contingent on net-
work structure. Our framework predicts that increased river
branching complexity dampens the fluctuations of down-
stream populations. The probability of branching strongly
decreases CVa, while increasing the mean branch number
does not significantly impact CVa if p is low. As p increases,
the influence of the mean branch number is amplified. Com-
paratively, the aggregating effects of populations moving
towards the confluence (with decreasing x) result in the larg-
est changes in CVa (Fig. 2a). Predicted changes in the magni-
tude of CVa thus represent baseline expectations of the
portfolio effect acting on populations that aggregate from
the tributaries to the confluence, given river metapopulation
structure.
As the population trajectories /i(t) become synchronised

such that the correlation coefficient r is increased, the role of
river metapopulation structure in lowering CVa is diminished
(Fig. 2b). Importantly, the effect of increased correlation is
strongly dependent on the branching probability; as the river
network metapopulation becomes more branched, the poten-
tial impact of population-level correlations increases, particu-
larly near the tributary nodes. Near the confluence,
population-level correlations always have a strong impact on
CVa. Thus, our findings suggest that river network complexity
can counter, but not eliminate, the variance-magnifying effects
of strong correlations between populations, and this effect is
emphasised in populations close to the confluence.
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Asymptotic stability

To evaluate the role of watershed metapopulation structure
on synchronisation, we compared the eigenratios (Λmax/Λ2) of
2 9 104 river metapopulations to those with randomly
assigned links. We found that metapopulation structure
had large, but opposing, effects on the potential for synchron-
ised dynamics for both river and their corresponding
random metapopulations. Random, or terrestrial,
metapopulations have many interconnected nodes, and the
likelihood of dynamic synchronisation remains relatively
unchanged as p increases (Fig. 3). By comparison, an increase
in the branching of river metapopulations results in higher
eigenratio values, which decreases the potential for synchroni-
sation.
To measure the impact of the eigenratio to changes in net-

work structure, we determined the transect sensitivity et for
5 9 105 randomly drawn river metapopulation networks with
a radius Ω = 12, a branching probability p = 0.5, and a
branch number j = 2. For each river metapopulation, a single
transecting link was added randomly at orders of observation
x = 2,…,Ω. If the measurements for all transected river meta-
populations are taken together, our results show that the dis-
tribution of et values is bimodal and skewed towards values
less than 1 (overall median: 0.94, low mode: 0.84, high mode:
1.05; Fig. 4a). The bimodality of et values suggests that tran-
sects added between different nodes have variable effects on
synchronisation: some decrease the potential for synchronisa-
tion, while most tend to increase the potential for synchroni-
sation. Specifically, we find that transects introduced near the
confluence tend to decrease et (increasing the potential for

synchronised dynamics), while those introduced at intermedi-
ate distances from the confluence to the tributaries have more
variable effects and can sometimes restrict synchronisation
(Fig. 4b,c). Transects introduced among tributary nodes
(x = Ω) have effects similar to those introduced near the con-
fluence, and always increase the potential for synchronised
dynamics.
The addition of a single transecting link has generally weak –

but occasionally large – impacts on the eigenratios of river
metapopulation networks, while increasing the proportion of
transected nodes in a river metapopulation has strongly nonlin-
ear effects on et. We find that et is extremely sensitive to the pro-
portion of transected tributary nodes, decreasing to a median
value of et = 0.38 if the proportion of transected nodes is
increased to 20%, and to et = 0.06 if the proportion is increased
to 100% (Fig. 4d). Therefore, short-circuiting the river meta-
population, such as through water engineering projects that link
tributaries, will increase the potential for synchronised dynam-
ics within the river network.

DISCUSSION

Structure and stability

Our mathematical treatment reveals two principle findings
regarding the predicted statistical and asymptotic stability of
watershed metapopulations. First, river metapopulation
structure buffers variance through statistical averaging.
River metapopulations with more complex branching struc-
tures decrease the magnitude of fluctuations for downstream
populations, but this effect is inhibited as population trajec-
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Figure 2. The coefficient of variation for a population aggregate on a river metapopulation (CVa) with a radius Ω = 5 as a function of the branching
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tories become more correlated, or synchronised (Fig. 2).
Second, river metapopulations are naturally buffered against
synchronised dynamics as a consequence of structure alone
(Fig. 3), and this contrasts with expectations for terrestrial
metapopulations. These complementary findings indicate
that the branching structure of river metapopulation
networks has large, nonlinear dampening effects on
population fluctuations due to the integration of asynchro-
nous population trajectories, while an increase in the num-
ber of branches intrinsically buffers the system against
synchronisation.
Our statistical and asymptotic analyses incorporate impor-

tant assumptions regarding interaction structure as well as
population equivalence across watersheds. Our river metapop-
ulation networks necessarily simplify the complex structure of
real-world river networks, in particular by ignoring smaller
tributaries that enter disproportionately larger tributaries.
Because including smaller tributaries increases the number of
subpopulations at every order of observation x, and because
this does not change the scaling relationship between meta-
population eigenratios and the number of tributaries
(Fig. S1), we submit that our simplification leads to conserva-
tive estimates of the effects of metapopulation structure on
aggregation and synchronisation dynamics.
Both statistical and asymptotic approaches assume that

each population, and all interpopulation interactions, is equiv-
alent across the river network, while the eigenratio analysis
makes the simplifying assumption of symmetric flow between
upstream and downstream populations. Although abiotic vari-
ables are expected to be principally influenced by downstream
water flow (e.g. sediment transport; Benda et al. 2004), popu-
lations of many aquatic organisms, such as salmon, may inter-
act symmetrically with both up- and downstream populations,
but are generally constrained to river branches (Grant et al.
2007). The inclusion of down-to-upstream interactions serves
to increase the fluctuation-dampening effects of aggregation
by increasing the number of populations that influence the
aggregate at x. If it is assumed that a population one node
downstream from the order of observation (such that
d = x � 1) aggregates into the node at x, the CV of the
aggregate at the downstream node is CVa(d) = CVa(x � 1),
assuming bidirectional flow from the node at d and the node
at x. Given bidirectional flow, we can assume that the mean
population size at the downstream node approximates that at
x, and in this case, the CV for the aggregate of both scales as
CVa(x,d)/Ψ�1CVa(x).
Interaction strengths influence both the structure (Yeakel

et al. 2012) and dynamics (Estes et al. 2011) of food webs,
and it is likely that they have a similarly important role
between populations in river networks (sensu Schick &
Lindley 2007). Although our asymptotic analysis assumes
equivalent interaction strengths between all populations, there
is precedence for using the eigenratio method to investigate
synchronisation on networks with interaction strengths scaled
to node degree (Motter et al. 2005). Analysis of synchronisa-
tion in metapopulations where interaction strengths scale to
the order of observation x, may thus have particular rele-
vance to river systems.
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Synchronisation and deviation of river metapopulation structure

Synchronisation can be explored further by altering the princi-
ple characteristics of river metapopulation structure and
observing the effects on Λmax/Λ2. When transects between river
branches are prohibited, node dynamics are naturally more
isolated in river networks with complex branching structures,
generally decreasing the potential for synchronised dynamics.
Short-circuiting the dendritic structure of river metapopula-
tions may result from water engineering projects such as canals
that link tributaries (Cowley et al. 2007), migrations of ani-
mals that are not exclusively aquatic such as amphibians or
stream insects (Finn et al. 2007), or active anthropogenic
translocation or movement of fish within and across water-
sheds (Simon & Townsend 2003). In our analyses, these con-
nections effectively link tributaries that would otherwise be
separate, such that distant populations can influence each
other, increasing the potential for synchronisation. In contrast,
transects that decrease the potential for synchronisation linked
more closely connected nodes (Fig. S2).

The inclusion of river transects can greatly lower the capac-
ity of the metapopulation network to buffer against synchro-
nisation, and single transects can dramatically lower network
eigenratios (Fig. 4a). Importantly, the spatial location of such
transects has nonlinear effects on synchronisation. The lower
et distributions of nodes either close to the confluence or link-
ing tributaries (Fig. 4b,c) highlight their importance in deter-
mining the dynamics of river metapopulations. Our
framework predicts that interactions transecting river
branches at these locations strongly increase the potential for
synchronisation, and that this effect can be realised by a small
number of connected river branches (Fig. 4d). This may be of
particular consequence for systems with large numbers of
transecting irrigation canals, such as those in arid environ-
ments (Cowley et al. 2007). Moreover, many stream inverte-
brates have a terrestrial (flying) life stage, where populations
cross between river branches (Finn et al. 2007). Thus, the
behaviour and mobility of stream organisms will modulate the
impacts of river metapopulation structure. Our research also
adds to an understanding of how river structure influences the
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resilience and recovery of species following disturbances.
While river networks can be easily fragmented (Fagan 2002),
tributary populations can serve as sources of species diversity,
aiding recolonisation after downstream disturbances (Raven &
George 1989). Our results indicate that the branching struc-
ture conferred by river networks decreases the potential for
synchronisation, facilitating such recolonisation.

Scales of interaction

Metapopulation structure depends on the scale over which an
organism’s dynamics are integrated across space (Olden 2007;
Er€os et al. 2012). This spatial scale determines the discretisa-
tion of the network, which we specify as the scale length ℓs.
The scale length is similar to the ‘grain at which [organisms]
perceive their environment’ (Er€os et al. 2012), but can be
refined further to define the area over which local population-
level processes occur, and this can be used to establish the
effective network for a given organism. The statistical proper-
ties of the effective network may be expected to differ for
organisms with different scale lengths. For instance, due to
differences in movement and body size, salmon metapopula-
tion networks will differ from snail metapopulations in the
same river network, potentially influencing synchronisation.
As the integration window for an organism decreases, the

effective size of the river metapopulation increases, propor-
tionately increasing the radius Ω. The river metapopulation
would thus conserve the number of branching nodes, but have
an increased number of nodes separating branches as ℓs
decreases, and this alters the probability of branching p. Thus,

p/Ω�1, such that as ℓs decreases, there is a corresponding
nonlinear decrease in p (Fig. 5a). We find that the eigenratios
of river metapopulation networks saturate as ℓs decreases,
which we simulate by increasing Ω (Fig. 5b). Thus, if the inte-
gration window of an organism is small, and the metapopula-
tion network retains the same branching structure, there is an
increasing resistance to synchronised dynamics. This result is
in accordance with theoretical experiments showing that syn-
chronisation is more likely to occur if the distance between
spatial patches is decreased in metapopulations (similar to
increasing ℓs; Heino et al. 1997). This would suggest that
organisms with smaller integration windows are predicted to
have greater persistence over time.
As the integration window decreases, the statistical proper-

ties of the metapopulation should change. For instance,
smaller organisms have access to river branches that larger
animals cannot use, altering the effective network structure.
If p decreases linearly with ℓs, there is greater-than-expected
branching for smaller scale lengths (Fig. 5c), accounting for
increased access to smaller river branches inaccessible to lar-
ger bodied organisms. This modified relationship has a large
influence on network eigenratios, such that both large and
small scale lengths increase the potential for synchronised
dynamics. This suggests that organisms with intermediate
integration windows are more buffered against synchronisa-
tion in river networks, enabling a greater capacity for ecolog-
ical rescue, and reducing extinction risk. In fact, a unique
bimodal size-based extinction risk has been observed for
freshwater fish populations (Olden et al. 2007), and although
we acknowledge that many factors contribute to this rela-
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tionship, it is worthwhile to consider the role of synchronisa-
tion and extinction risk as a function of organismal scale
length.
Our results show that the structure of river metapopulations

confers dual stability by dampening fluctuations and main-
taining the asynchrony that attenuates variability. Thus, river
network structure should influence the long-term dynamics
and extinction risk of metapopulations. However, populations
are not isolated, and the dynamical consequences of inter-
actions in metacommunities can themselves be spatially
structured (Holland & Hastings 2008). For example, con-
sumer-resource interactions in networks can give rise to
Turing patterns, or self-organised spatial arrangements of spe-
cies abundances (Nakao & Mikhailov 2010; Fernandes & de
Aguiar 2012), and whether this is possible in river networks
may influence community persistence. We have shown that
river metapopulation structure strongly impacts the potential
for synchronisation. We anticipate that this general theory
will inspire examination of the mechanistic underpinnings that
promote or impede synchronisation. Understanding how the
structural properties of river networks influence the dynamics
and potential extinction risk of river metapopulations is essen-
tial for effective management of river ecosystems.
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